Our Precision Machining Services
Steigern Sie Ihre Komponentenproduktion mit unserer Precision Machining services—the gold standard for hohe Präzision und eng Toleranzen across aerospace, medizinisch, und Automobilindustrie. Nutzung fortgeschritten CNC -Bearbeitung Technologie, we craft complex geometries from metals (Titan, Edelstahl), Verbundwerkstoffe, and exotic materials—delivering consistent, repeatable results for prototypes to high-volume production. With optimized processes, Benutzerdefinierte Lösungen, und kompromisslose Qualität, we turn your most demanding designs into reliable, high-performance parts.

What Is Precision Machining?
Präzisionsbearbeitung is an advanced manufacturing Technologie Das verwendet computergesteuerte (or manual) tools to shape raw materials into components with extremely tight Toleranzen and exact specifications. Unlike conventional machining (which focuses on basic shape creation), it prioritizes hohe Präzision—often achieving tolerances as tight as ±0.001mm—to meet the strict requirements of industries like aerospace and medical devices.
Der Prozessübersicht revolves around removing material with pinpoint accuracy: A design (CAD -Datei) is translated into machine instructions, guiding cutting tools (Mühlen, Drehmaschine, Übungen) to remove excess material layer by layer. Der Kern von Wie es funktioniert lies in precision control—whether via CNC -Bearbeitung (automatisiert, computer-driven) or advanced manual tools (for ultra-specialized parts). Every step is calibrated to minimize error, from tool selection to final inspection.
In einfachen Worten, think of precision machining as “micro-sculpting for industrial parts”: While conventional machining might create a bolt that fits a hole, precision machining creates a bolt that fits perfectly Jedes Mal, even if the hole is smaller than a human hair. This focus on consistency and accuracy makes it indispensable for parts where even tiny deviations could cause failure (Z.B., Medizinische Implantate, Luft- und Raumfahrtsensoren).
Our Precision Machining Capabilities
We offer comprehensive machining capabilities tailored to the demands of precision-focused industries, mit einem Fokus auf Präzisionsniveaus, tolerance achievements, und Flexibilität. Below is a detailed breakdown of our key capacities:
Fähigkeit | Spezifikation |
Präzisionsniveaus | – Positioning accuracy: ±0.001–0.01mm- Wiederholbarkeit: ±0.0005–0.005mm |
Tolerance Achievements | – Standard: ± 0,005 mm (Metalle), ± 0,01 mm (Nichtmetalle)- Kritische Teile: ± 0,001 mm (Z.B., Luft- und Raumfahrtsensoren)- Trifft ISO 2768-1 (extra-fine grade) and ASME Y14.5 |
Maximale Teilgröße | – Kleine Teile: 0.5mm × 0.5mm × 0.5mm (Mikrokomponenten)- Große Teile: 2000mm × 1000mm × 800mm (Strukturkomponenten)- Gewicht: Up to 500kg |
Materialstärke | – Metalle: Up to 200mm (Edelstahl), 150mm (Titan), 250mm (Aluminium)- Non-Metals: Up to 300mm (Kunststoff), 200mm (Verbundwerkstoffe), 100mm (Keramik)- Exotische Metalle: Up to 100mm (Tantal, inconel) |
Benutzerdefinierte Bearbeitung | – Merkmale: Micro-holes (0.1mm Durchmesser), complex 3D curves, threaded surfaces, unterkuppelt- Kompatibilität: CAD/CAM files (DXF, DWG, SCHRITT, Stl, IGES)- Volumen: Prototypen (1–50 Einheiten) to high-volume (100,000+ Einheiten/Monat) |
Werkzeugoptionen | – Schneidwerkzeuge: Carbid, diamantgeschaltet, Keramik (for exotic metals)- Spezialwerkzeuge: Micro-end mills (0.05mm Durchmesser), precision reamers, thread taps- Tool changers: Automatisiert (bis zu 60 Werkzeuge) for high-volume runs |
Qualitätssicherung | – In-line inspection systems (Laserscanner, Cmm)- Statistische Prozesskontrolle (SPC)- Einhaltung: ISO 9001, AS9100 (Luft- und Raumfahrt), ISO 13485 (medizinisch) |
Whether you need a 0.1mm micro-hole in a titanium medical part or 10,000 aluminum automotive brackets with ±0.005mm tolerance, our capabilities scale to match your project’s complexity.
The Precision Machining Process (Schritt für Schritt)
Unser Schritt-für-Schritt-Prozess is designed to prioritize accuracy at every stage—from design to finished part:
- Design and CAD Modeling: We start by reviewing your CAD model (or creating one from sketches/specifications). Our engineers optimize the design for precision machining—e.g., ensuring features like micro-holes are accessible to tools and tolerances are realistic for the chosen material. Für komplexe Teile, we use 3D simulation to test feasibility.
- Cam -Programmierung: The CAD model is imported into CAM software (Mastercam, SolidWorks CAM) to generate optimized Werkzeugpfade. Wir wählen Tools, Geschwindigkeiten, and feeds based on material (Z.B., slow speeds for titanium, high speeds for aluminum) and program sequential operations (milling → drilling → turning) to minimize setup time.
- Setup and Calibration: The workpiece is secured in custom Fixture Design (Z.B., vacuum chucks for thin parts, hydraulic clamps for heavy metals) Bewegung zu verhindern. We calibrate tools and machines using laser interferometers and ball bars—ensuring CNC -Programmierung aligns with CAD specifications to within ±0.001mm.
- Bearbeitungsausführung: The machine runs the CAM program, with real-time monitoring via CNC software. Für hochpräzise Teile, Wir verwenden coolant systems (flood for metals, mist for plastics) to reduce heat distortion. Operators oversee the process, adjusting parameters if needed (Z.B., slowing feed rates for hard exotic metals).
- Post-Machining Inspection: Parts undergo rigorous Qualitätskontrolle—100% inspection for critical components (Z.B., Medizinische Implantate) Verwenden von CMMs (Koordinatenmessmaschinen), Optische Vergleicher, and surface profilometers. We verify dimensions, Toleranzen, and surface finish against CAD data.
Fertig (falls erforderlich): Teile bewegen sich nach Oberflächenbehandlung (Z.B., Polieren, Anodisierung) before a final inspection to ensure finishes meet requirements.
Materials We Work With
Präzisionsbearbeitung excels with a wide range of materials—from common metals to rare exotic alloys. Below is a breakdown of our supported materials, ihre wichtigsten Eigenschaften, und ideale Verwendungen:
Materialkategorie | Beispiele | Schlüsseleigenschaften | Ideale Anwendungen | Machining Notes |
Metalle | Edelstahl | Korrosionsbeständig, stark | Medizinische Instrumente, Luft- und Raumfahrtbefestigungen | Verwenden Sie Carbid -Werkzeuge; flood coolant reduces heat |
| Aluminium | Leicht, leitfähig, Einfach zu maschine | Kfz -Teile, Elektronikgehäuse | High speeds (bis zu 15,000 Drehzahl); minimal tool wear |
| Titan | Hohe Kraft-Gewicht, Biokompatibel | Orthopädische Implantate, Turbinenklingen | Langsame Geschwindigkeiten; sharp tools prevent wear |
| Messing | Formbar, leitfähig | Elektrische Anschlüsse, precision valves | Fast speeds; produces smooth finishes |
| Kupfer | Highly conductive, soft | Wärmetauscher, electronics components | Use coolant to avoid melting; sharp tools |
Non-Metals | Kunststoff (ABS/Polycarbonate) | Leicht, langlebig | Consumer goods casings, Prototypen | Low speeds to prevent warping |
| Verbundwerkstoffe | Hohe Stärke, Leicht | Aircraft panels, racing car parts | Specialized carbide tools to avoid fraying |
| Holz | Natural, kostengünstig | Custom fixtures, Dekorative Teile | Sharp tools; vacuum fixtures secure parts |
| Acryl | Transparent, starr | Fälle anzeigen, optische Komponenten | Low feed rates to prevent cracking |
Special Materials | Exotische Metalle (Tantalum/Inconel) | Hitzebeständig, corrosion-proof | Luft- und Raumfahrtmotorteile, chemical processing equipment | Keramikwerkzeuge; langsam, steady feeds |
| Keramik | Hart, hitzebeständig | Elektrische Isolatoren, Medizinische Implantate | Diamantbeschichtete Werkzeuge; low speeds |
We test all materials to optimize tool selection, Geschwindigkeiten, and coolant use—ensuring consistent precision across every part.
Oberflächenbehandlung & OPTIONEN
Nach der Bearbeitung, Wir bieten eine Reihe von einer Reihe von Oberflächenbehandlung Und finishing options to enhance part durability, Funktionalität, und Aussehen. Our most popular services include:
- Schleifen: Schafft einen glatten, flat surface (ideal for parts requiring tight fitment, Z.B., Motorwellen).
- Polieren: Delivers a glossy, mirror-like finish (Z.B., stainless steel medical tools, Dekorative Konsumgüter).
- Malerei: Applies a corrosion-resistant coating (matte/gloss) for outdoor/industrial parts (Z.B., Kfz -Klammern).
- Beschichtung: Options include powder coating (dick, kratzfest) for industrial parts and PVD (Physische Dampfabscheidung) coating for high-wear components (Z.B., Werkzeug).
- Anodisierung: Adds a protective oxide layer to aluminum (available in custom colors) for electronics enclosures and aerospace parts.
- Wärmebehandlung: Strengthens metals (Z.B., Titanimplantate, steel gears) by heating/cooling—improving hardness and fatigue resistance.
- Enttäuschung: Removes sharp edges (für die Sicherheit kritisch, Z.B., Medizinprodukte, Konsumgüter).
- Elektroplierend: Coats parts with a thin layer of metal (Gold, Silber, Nickel) für Leitfähigkeit, Korrosionsbeständigkeit, oder Ästhetik (Z.B., elektrische Anschlüsse).
The table below compares our finishing options by key factors:
Finishing Option | Haltbarkeit | Vorlaufzeit | Kosten (pro Teil, avg.) | Am besten für |
Grinding | Hoch | 1–2 Tage | 15–40 | Engine shafts, precision fits |
Polieren | Mittel | 2–3 Tage | 20–50 | Medizinische Werkzeuge, Dekorative Teile |
Gemälde | Hoch | 2–4 Tage | 10–35 | Outdoor automotive/industrial parts |
Beschichtung (Pulver) | Sehr hoch | 3–5 Tage | 25–60 | Heavy-duty industrial parts |
Anodisierung | Sehr hoch | 3–4 Tage | 18–45 | Aluminum electronics/aerospace |
Wärmebehandlung | Sehr hoch | 4–6 Tage | 30–75 | Titanium/steel high-stress parts |
Enttäuschung | Mittel | 1 day | 5–15 | Safety-critical parts (medical/consumer) |
Elektroplierend | Hoch | 2–3 Tage | 25–80 | Elektrische Anschlüsse, Dekorative Teile |
Toleranzen & Qualitätssicherung
Toleranzen Und accuracy standards are the foundation of precision machining—especially for parts used in safety-critical industries. Unser Präzisionsniveaus Und Toleranzbereiche are tailored to your material and application, backed by rigorous Messtechniken Und quality control processes:
Material | Toleranzbereich | Accuracy Standard Used | Messtechnik | Inspektionsmethoden |
Edelstahl | ±0.001–0.005mm | ISO 2768-1 (extra-fine), Asme Y14.5 | CMM + Laserscanner | 100% Inspektion auf kritische Teile |
Titan | ±0.001–0.008mm | ISO 2768-1 (extra-fine), AMS 4928 | CMM + Optischer Vergleicher | 100% Inspektion + stress testing |
Aluminium | ±0.003–0.01mm | ISO 2768-1 (Bußgeld), AMS 2750 | CMM + Digital Calipers | Probenahme (5%) for high-volume |
ABS Plastic | ±0.005–0.02mm | ISO 2768-1 (Bußgeld), ASTM D638 | CMM + Mikrometer | Probenahme (10%) for prototypes |
Exotische Metalle (Inconel) | ±0.002–0.006mm | ISO 2768-1 (extra-fine), AS9100 | CMM + X-Ray Fluorescence | 100% Inspektion + material verification |
Ceramics | ±0.003–0.01mm | ISO 2768-1 (Bußgeld), ASTM C242 | Optical Profilometer + CMM | 100% Inspektion (brittle material) |
Unser quality control processes enthalten:
- Vorabbau: Inspecting raw materials for defects (Z.B., cracks in titanium, impurities in exotic metals) and verifying material composition (via X-ray fluorescence).
- In-Prozess: Real-time monitoring of tool paths, Temperaturen, and cutting forces; periodic checks with calipers/micrometers.
Nach dem Maschinieren: 100% Inspektion auf kritische Teile (medical/aerospace); statistical sampling for high-volume orders. We also document every step (Bearbeitungsparameter, Inspektionsergebnisse) for compliance.
Key Advantages of Precision Machining
Compared to conventional machining or additive manufacturing, Präzisionsbearbeitung offers unmatched benefits for high-performance parts:
- Hohe Präzision: Achieves tolerances as tight as ±0.001mm—critical for parts like medical implants (where fit directly impacts patient safety) or aerospace sensors (where accuracy affects flight performance).
- Consistency and Repeatability: CNC-driven processes ensure every part is identical—even for high-volume orders (Z.B., 100,000 Kfz -Klammern). This eliminates variation that causes assembly issues.
- Komplexe Geometrien: Griff komplizierte Merkmale (Mikrolöcher, unterkuppelt, 3D-Kurven) that are impossible with conventional tools. Zum Beispiel, we can machine a titanium turbine blade with 100+ precision-cooling holes.
- Reduzierte Setup -Zeit: Automated tool changers and CAM programming cut setup time by 50–70% compared to conventional machining—speeding up production for both prototypes and high-volume runs.
- Increased Efficiency: Optimiert Werkzeugpfade and high-speed spindles reduce per-part machining time. Für Aluminiumteile, we achieve speeds up to 15,000 RPM—3x faster than conventional methods.
- Vielseitigkeit: Works with almost any material (Metalle, Nichtmetalle, exotics, Keramik)—making it a one-stop solution for diverse projects (Z.B., a medical device with titanium components and plastic casings).
- Kosteneffizienz: While upfront costs are higher than conventional machining, Reduzierter Abfall (precision cutting minimizes material loss) and fewer defects lower long-term costs—especially for high-volume orders.
Qualität und Zuverlässigkeit: Streng Qualitätskontrolle und Einhaltung der Branchenstandards (ISO 13485, AS9100) ensure parts meet strict performance requirements—reducing the risk of failures in the field.
Branchenanwendungen
Präzisionsbearbeitung is used across industries that demand high-performance, reliable parts. Hier sind die häufigsten Anwendungen:
Industrie | Gemeinsame Verwendungen | Key Benefit of Precision Machining |
Luft- und Raumfahrt | Turbinenklingen (titanium/inconel), Sensorgehäuse, Strukturklammern | High precision for flight safety |
Automobil | Motorkomponenten (Stahl), Übertragsteile (Messing), Elektronikgehäuse (Aluminium) | Consistency for mass production |
Medizinprodukte | Orthopädische Implantate (Titan), chirurgische Werkzeuge (Edelstahl), device casings (Plastik) | Biokompatibilität + enge Toleranzen |
Industrielle Fertigung | Machine tooling (Stahl), Teile des Fördersystems (Aluminium), Hydraulikventile (Messing) | Durability for heavy use |
Elektronik | Leiterplattenanschlüsse (Kupfer), Kühlkörper (Aluminium), Mikrokomponenten (Kunststoff) | Präzision für kleine, dense parts |
Verteidigung | Waffenkomponenten (Stahl), vehicle armor parts (Titan), Kommunikationsausrüstung (Verbundwerkstoffe) | Reliability in harsh environments |
Tool and Die Making | Injektionsformen (Stahl), Stempeln stirbt (Carbid), custom cutting tools | Complex geometry + long tool life |
Prototyping | Rapid prototypes of new products (plastics/aluminum) | Schnelle Turnaround + Designflexibilität |
Advanced Manufacturing Techniques in Precision Machining
To deliver unmatched precision and efficiency, Wir nutzen Spitzenreiter Bearbeitungstechniken and optimized processes tailored to different materials and part requirements:
- Mahlen:
- 3-Achsenfräsen: For simple 3D parts (Z.B., Aluminiumhalterungen) — uses X/Y/Z linear axes to cut slots, Taschen, and flat surfaces. We use high-speed milling (bis zu 15,000 Drehzahl) for aluminum to reduce cycle time.
- 5-Achsenfräsen: Für komplexe Geometrien (Z.B., Titan -Turbinenklingen) — adds two rotary axes (A/B) to access undercuts and curved surfaces in one setup. This eliminates multiple setups, reducing error by 70%.
- Mikromillung: Für winzige Teile (Z.B., Elektronikstecker) — uses micro-end mills (0.05mm Durchmesser) und extrem niedrige Vorschubgeschwindigkeiten (5–10 mm/min) to create features as small as 0.1mm.
- Drehen:
- CNC drehen sich: Für zylindrische Teile (Z.B., brass valves) — rotates the workpiece while a cutting tool shapes the outer/inner diameter. We use live tooling (integrated drills/taps) to add holes or threads in one operation.
- Swiss Turning: Lange, dünne Teile (Z.B., medical needles) — holds the workpiece with a guide bushing to minimize vibration, achieving tolerances as tight as ±0.001mm.
- Bohren & Langweilig:
- Micro-Drilling: Für kleine Löcher (0.1mm Durchmesser) in titanium or ceramics — uses diamond-coated drills and peck drilling (Z-axis moves up/down to clear chips) to avoid tool breakage.
- Precision Boring: For high-accuracy holes (Z.B., engine cylinder liners) — uses single-point boring tools to achieve surface finishes as smooth as Ra 0.2μm.
- Werkzeugpfadoptimierung:
- We use CAM software to generate Werkzeugpfade that minimize tool travel (reducing cycle time by 20–30%) and avoid sharp turns (preventing tool wear). For hard materials like inconel, we use trochoidal milling (a circular tool path) to distribute cutting force evenly.
- Schneidwerkzeuge:
- Carbid -Werkzeuge: Für die meisten Metalle (Stahl, Aluminium, Titan) — durable and heat-resistant, Ideal für hochvolumige Läufe.
- Diamond-Coated Tools: Für Keramik, Acryl, and exotic metals — prevent chipping and ensure smooth finishes.
- Keramikwerkzeuge: For high-temperature alloys (inconel, Tantal) — withstand heat up to 1,200°C, reducing tool changes by 50%.
- Kühlmittelsysteme:
- Flood Coolant: For metal machining (Z.B., steel gears) — delivers high-pressure coolant (50–100 bar) to the cutting zone, reducing heat distortion by 80%.
- Mist Coolant: Für Nichtmetalle (Z.B., Acryl) and micro-parts — sprays a fine coolant mist to avoid residue while preventing overheating.
- Vorrichtungsdesign:
Custom fixtures (3D-printed or machined) secure parts without deformation. For thin aluminum sheets, we use vacuum chucks; for heavy steel parts, hydraulic clamps with soft jaws (Kratzer vermeiden).
Fallstudien: Precision Machining Success Stories
Unser Precision Machining services have solved complex challenges for clients across aerospace, medizinisch, und Automobilindustrie. Unten sind zwei Erfolgreiche Projekte showcasing our expertise in tight tolerances and complex geometries:
Fallstudie 1: Aerospace Turbine Blade Manufacturer (Inconel Blades)
- Herausforderung: Der Kunde benötigte 500 inconel turbine blades for jet engines—each with 120 precision-cooling holes (0.8mm Durchmesser), a curved airfoil, and a tolerance of ±0.002mm. Inconel (an exotic metal) is heat-resistant but difficult to machine; the client’s previous supplier failed to meet tolerances (holes were misaligned by 0.01mm) and had a 6-week lead time.
- Lösung: Wir haben benutzt 5-axis milling (A/B rotary axes) to machine each blade in one setup—eliminating alignment errors. For the cooling holes, we used micro-drills (diamantgeschaltet) and peck drilling to avoid tool breakage. We optimized Werkzeugpfade for inconel (slow feed rates: 10 mm/min, high spindle speed: 3,000 Drehzahl) and used flood coolant (100 Bar) to reduce heat. Our quality team inspected each blade with a CMM and laser scanner to verify hole position and airfoil shape.
- Ergebnisse:
- 100% of blades met the ±0.002mm tolerance—hole misalignment dropped from 0.01mm to 0.001mm.
- Lead time shortened from 6 Wochen zu 2 weeks—helping the client meet their engine production schedule.
- The client’s engine efficiency improved by 5% (thanks to precise cooling hole placement, which optimized airflow).
- Client -Zeugnis: “The precision of these blades is unmatched. The cooling holes are perfectly aligned, and the lead time saved our production line. We’ve made them our exclusive supplier for inconel components.” — David L., Aerospace Engineering Manager.
- Before and After: Previous blades had uneven airfoils and misaligned holes; our blades featured smooth, consistent curves and holes that matched CAD specifications exactly.
Fallstudie 2: Medical Device Company (Titanium Spinal Implants)
- Herausforderung: Der Kunde benötigte 1,000 patient-specific titanium spinal implants—each with a porous surface (zur Knochenintegration), a threaded section, and a tolerance of ±0.003mm. The implants required FDA compliance, and the client needed a 3-week lead time (to meet urgent surgery schedules). Their previous supplier used additive manufacturing, which couldn’t achieve the required thread precision.
- Lösung: Wir haben benutzt Swiss turning (for the threaded section) Und 3-axis micro-milling (for the porous surface). We machined each implant from medical-grade titanium (ASTM F136) and used a specialized fixturing system to hold the part during porous surface milling. Nach der Bearbeitung, we added a Polieren finish to the non-porous sections and conducted 100% Inspektion (CMM für Abmessungen, X-ray for material purity). We also prepared FDA-compliant documentation (machining logs, Inspektionsberichte).
- Ergebnisse:
- 100% of implants met the ±0.003mm tolerance and FDA requirements—no rejections.
- Surgeons reported a 40% reduction in implant insertion time (due to precise threads and patient-specific fit).
- Patient recovery time decreased by 25% (thanks to the porous surface, which promoted faster bone growth).
- Challenge Overcome: Additive manufacturing struggled with thread precision; our precision machining combined Swiss turning and micro-milling to achieve both tight tolerances and the required porous surface.
Client -Zeugnis: “These implants have transformed our spinal surgery outcomes. The precision fit and bone integration are far better than additive parts. We now order all our titanium implants from them.” — Dr. Sarah K., Orthopedic Surgeon.
Why Choose Our Precision Machining Services?
With numerous precision machining providers, here’s what makes us the trusted partner for safety-critical and high-performance parts:
- Expertise in Precision Machining: Unser Team hat 25+ years of specialized experience—we master advanced techniques like 5-axis milling, Swiss turning, and micro-machining. Unsere Ingenieure sind in AS9100 zertifiziert (Luft- und Raumfahrt) und ISO 13485 (medizinisch) and can solve complex challenges (Z.B., machining 0.1mm holes in ceramics, achieving ±0.001mm tolerance in inconel) that other providers can’t.
- Experience in Various Industries: Wir haben gedient 800+ Kunden über 10 industries—from aerospace giants to medical startups. This cross-industry experience means we understand sector-specific requirements: FAA compliance for turbine blades, FDA regulations for implants, and ISO/TS 16949 for automotive parts.
- High-Quality Equipment: We invest in state-of-the-art machines—20 CNC mills/lathes (including 5-axis and Swiss turning systems), 5 Cmm (with laser scanning capability), and micro-machining centers. All equipment is calibrated weekly (using laser interferometers) to maintain ±0.001mm precision.
- Hervorragender Kundenservice: Unser Team ist verfügbar 24/7 to support your project—from design consultation to post-delivery. We offer free CAD reviews (helping you optimize designs for precision machining, Z.B., adjusting hole positions to avoid tool access issues) and free samples (so you can verify quality before placing large orders). Für dringende Projekte (Z.B., medical implant shortages), we assign a dedicated project manager.
- Schnelle Turnaround -Zeiten: Our optimized processes deliver industry-leading lead times:
- Prototypen (1–50 Einheiten): 1–3 Tage
- Low-volume orders (50–500 Einheiten): 3–7 Tage
- High-volume orders (500+ Einheiten): 7–14 Tage
Für Rush -Bestellungen (Z.B., aerospace emergency replacements), we can deliver parts in 48 Std. (für kleine Chargen) by running machines 24/7.
- Kostengünstige Lösungen: We help you save money through:
- Optimized tool paths: Reduce material waste by 15–20% (critical for expensive exotic metals like inconel).
- One-setup machining: Eliminates labor costs from multiple setups (saves 30–40% vs. conventional methods).
- Volume discounts: 10% off orders over 1,000 units and 15% off orders over 10,000 units—ideal for automotive/aerospace high-volume parts.
Commitment to Quality: Wir sind ISO 9001, AS9100, und ISO 13485 certified—our quality control processes sicherstellen 99.9% of parts meet your specifications. We also offer traceability (every part is labeled with a unique ID, linked to machining logs and inspection data) for compliance.