Die-casting sand holes—also called пористость или pinholes—are tiny voids in die-cast parts, ranging from 0.1mm to 2mm in diameter. They appear as surface pinpricks, subcutaneous cavities, or internal pores, and can reduce a part’s tensile strength by 15–30% (industry data). For critical parts like automotive engine brackets or medical device components, sand holes even lead to scrapping rates as high as 12%. But what causes these defects? How to distinguish different types of sand holes? And what systematic solutions can eliminate them long-term? This article answers these questions with actionable, data-backed strategies.
1. Types of Die-Casting Sand Holes: Morphology & Harm
Not all sand holes are the same—different types have unique characteristics and impacts. The table below classifies common sand holes and their key details:
Sand Hole Type | Morphological Features | Typical Location | Harm Level (1–5, 5=Severe) | Метод обнаружения |
Surface Dispersion Pinholes | Tiny, scattered holes (0.1-0,3 мм); visible to the naked eye | Part surfaces, near parting lines | 3 (ruins aesthetics; no structural risk for non-load parts) | Визуальный осмотр + magnifying glass (10×) |
Concentrated Atmospheric Pores | Larger holes (0.5–2 мм); clustered in groups | Толстостенные участки, final filling zones | 5 (вызывает концентрацию стресса; приводит к растрескиванию под нагрузкой) | Рентгеновская дефектоскопия + Тестирование плотности |
Subcutaneous Needle-Like Stomata | Тонкий, needle-shaped voids (0.1–0,5 мм); hidden under the surface | Near gates, соединения бегунков | 4 (exposed after machining; weakens local strength) | Ультразвуковое тестирование (UT) + sectioning inspection |
Heat Treatment Reaming Pores | Small holes that expand (to 0.5–1mm) После термической обработки | Тепло, обработанные деталями (НАПРИМЕР., T6 aluminum alloys) | 5 (renders load-bearing parts unsafe; 100% Скорость лома) | Post-heat-treatment X-ray + Тестирование на растяжение |
2. Core Causes of Die-Casting Sand Holes: A 3-Dimension Analysis
Sand holes arise from failures in material preparation, дизайн плесени, and process control—three interrelated links. Below is a detailed breakdown with quantitative thresholds:
А. Material-Related Causes (30–40% of Sand Holes)
Impure or improperly processed molten metal is a top trigger:
- Excess Gas Content: Hydrogen content >0.3cc/100g Al (для алюминиевых сплавов) causes gas to expand during cooling, forming pinholes. This often happens when melting is not protected by inert gas.
- Inclusion Contamination: Oxide slag or foreign particles (>0.1mm) in the metal block gas flow, creating voids. Common sources: mixing different alloy grades, or using ingots with oil stains/corrosion.
- Poor Raw Material Management:
- Return material reused >3 times: Increases oxide content by 20–30%, leading to inclusion-based pores.
- No preheating: Ingots cold-charged directly into the furnace create temperature gradients (>100°C), causing uneven gas release.
Беременный. Дизайн плесени & Maintenance Failures (25–35% of Sand Holes)
Mold issues trap gas or disrupt metal flow:
Mold Problem | Технические детали | Impact on Sand Holes |
Inadequate Exhaust | Exhaust groove depth <0.1мм; blocked by carbon buildup (>0.05мм толщиной) | Gas in the cavity cannot escape; forced into the metal to form pores |
Poor Gating Design | Gate angle >60° (not 45° oblique); no buffer nest/slag collection | Metal splashes and rolls in air; creates concentrated atmospheric pores |
Worn Mold Surfaces | Cavity roughness Ra >1.6мкм; wear pits (>0.2мм глубоко) | Движение металла затруднено; air is trapped in pits to form pinholes |
Excessive Paint Thickness | Mold paint >8мкм толщиной; uneven coating | Paint burns and releases gas during casting; gas is trapped as surface pinholes |
В. Process Parameter Mismatches (30–35% of Sand Holes)
Uncontrolled injection, температура, or pressure settings exacerbate sand holes:
- Injection Speed Errors: Low-speed section >0.3m/s (для алюминиевых сплавов) causes turbulent flow—metal splits and traps air. High-speed section with sudden acceleration (>5m/s²) leads to gas entrainment.
- Temperature Imbalance:
- Mold preheating gradient >40°C (НАПРИМЕР., 260°C on the current surface vs. 210°C at the far end) causes local overheating and gas expansion.
- Molten metal temperature <650° C. (алюминиевые сплавы) leads to premature solidification—gas cannot escape before the metal sets.
- Pressurization Timing Delay: Pressurization triggered >0.2s after filling completion allows gas to expand, forming subcutaneous stomata.
3. Systematic Solutions: From Material to Process
Resolving sand holes requires a holistic approach—fixing one link alone is ineffective. Ниже представлена пошаговая схема решения.:
А. Material Control: Purify & Standardize
Мера | Детали реализации | Ожидаемый результат |
Inert Gas Protection | Use argon/nitrogen to blanket the melt throughout melting; скорость потока: 5–10л/мин | Reduces hydrogen absorption by 40–60%; gas content ≤0.2cc/100g Al |
Deep Degassing | Use rotating degassing rods (скорость: 400–600rpm) + compound refiners (rare earth-based); degassing time: 15–20min | Удаляет 80% of oxide slag; inclusion content <0.05% |
Raw Material Management | – New material proportion ≥70%; return material reused ≤3 times.- Preheat ingots to 300–400°C before melting.- Forbid mixing different alloy grades or contaminated ingots | Reduces inclusion-based pores by 30–40%; stabilizes melt quality |
Standing Precipitation | Let molten metal stand in the holding furnace for ≥15min; температура: 680–700 ° C. (алюминиевые сплавы) | Oxides/inclusions settle to the bottom; melt purity ≥99.9% |
Беременный. Mold Optimization: Enhance Exhaust & Flow
- Exhaust System Upgrade:
- Install serpentine exhaust ducts (глубина: 0.1–0,2 мм) at final filling zones; add exhaust grooves at parting surface-movable block junctions.
- Verify exhaust patency with a smoke test during trial runs: Smoke should exit smoothly without backflow.
- Clean exhaust ducts weekly to remove carbon buildup (<0.03mm thick after cleaning).
- Gating System Reconstruction:
- Adjust gate angle to 45° oblique impact cavity (reduces metal splash by 50%).
- Add buffer nests (объем: 5–10% of cavity volume) and slag collectors at cavity ends to trap cold materials/inclusions.
- Design runners with proportional cross-sections: Main channel > diversion channel > inner gate (ensures laminar flow; Reynolds number <2000).
- Mold Maintenance Strengthening:
- Polish cavity surfaces monthly to Ra ≤0.8μm; repair wear pits/cracks with laser cladding.
- Add sealing rubber strips/O-rings to insert joint surfaces (clearance ≤0.03mm) to prevent metal leakage.
- Control mold paint thickness at 5–8μm; apply uniformly with an airbrush (avoids paint-induced gas).
В. Process Regulation: Точный контроль
Стадия процесса | Key Parameter Settings | Monitoring Method |
Injection Speed | – Low-speed section: ≤0.3m/s (fills 80% of cavity).- High-speed section: Smooth acceleration curve (≤3m/s²); speed matches part thickness (0.5–1m/s for thin walls). | Real-time speed curve monitor; deviation ≤±0.1m/s |
Temperature Field | – Mold preheating: 220–260 ° C. (current surface), 180–200 ° C. (far end); gradient ≤40°C.- Molten metal temperature: 680–720°C (алюминиевые сплавы); fluctuation ≤±10°C. | Infrared thermal imager + thermocouples (10 points in cavity) |
Pressurization | – Trigger timing: 0–0.1s after filling completion.- Удерживание давления: 40–60MPa (алюминиевые сплавы); время выдержки: 5–8s.- Pressure building time: Synchronized with metal solidification time. | Pressure sensor + Рентген (verifies no pore expansion) |
Дюймовый. Auxiliary Measures: Boost Defect Prevention
- Вакуумный кастинг: Apply to complex thin-walled parts; ultimate vacuum degree ≥90kPa. Use a three-stage exhaust system to reduce gas content to <0.1cc/100g Al—cuts sand holes by 50–60%.
- Filtration Integration: Install ceramic foam filters (CFM) at the cross sprue front end; пористость: 10–20 PPI. Keep filter-cavity distance ≥50mm to avoid blockage—traps 90% of inclusions.
- Vibration-Assisted Casting: Mount high-frequency vibrators (50–100Hz, amplitude 0.3–0.5mm) near inner gates. Vibration breaks metal surface tension, promoting gas escape—reduces subcutaneous stomata by 30%.
4. Standardized Monitoring & Continuous Improvement
To avoid sand hole recurrence, implement strict monitoring and optimization:
А. Production Process Control
- First-Part Inspection: Check each shift’s first part for sand holes—focus on thick-walled transitions and distal dead corners. Use 10× magnifying glass for surface pinholes; UT for subcutaneous defects.
- Parameter Recording: Log injection speed, температура, and pressure for each batch. Establish a defect traceability file (link sand holes to specific parameters).
- Техническое обслуживание оборудования:
- Clean pressure chamber/punch residual chips daily (prevents impurity inclusion).
- Calibrate pressure curves monthly; maintain die casting machine hydraulic system quarterly (eliminates pressure fluctuations >±2MPa).
- Replace worn punches/cores yearly (dimensional deviation ≤±0.05mm).
Беременный. Effect Verification & Оптимизация
- Методы тестирования: Use X-ray flaw detection (porosity grade ≤2 per ASTM E446) и тестирование плотности (density ≥2.65g/cm³ for aluminum alloys) to verify improvement.
- Orthogonal Testing: Optimize parameter combinations (НАПРИМЕР., injection speed × mold temperature × holding time) via orthogonal tests. Например, a 3-factor, 3-level test can identify the optimal process window.
5. Yigu Technology’s Perspective on Die-Casting Sand Holes
В Yigu Technology, we see sand holes not just as defects, but as indicators of process instability. Для автомобильных клиентов, our integrated solution—argon gas protection + вакуумный кастинг + AI parameter control—reduced sand hole rates from 11% к <1.5% в 2 месяцы. For medical device manufacturers, our rare earth-based refiners and CFM filtration cut inclusion pores by 80%, meeting ISO 13485 стандарты.
We’re advancing two key innovations: 1) Real-time hydrogen sensors (response time <0.1с) that alert to excess gas before casting; 2) Digital twin simulation (MAGMA software) to optimize mold exhaust/gating upfront. Our goal is to help manufacturers stabilize their process window, turning sand hole prevention into a cost-saving advantage—cutting scrap rates by 60% и повышение эффективности производства за счет 15%.
Часто задаваемые вопросы
- Can sand holes be repaired after casting, or must defective parts be scrapped?
Minor surface pinholes (≤0,3 мм) can be repaired with aluminum alloy filler (for non-load parts). Однако, concentrated atmospheric pores (>0.5мм) or heat treatment reaming pores must be scrapped—repairing masks structural risks. Рекомендуем устранить первопричины (НАПРИМЕР., improving exhaust) вместо того, чтобы полагаться на послеремонтный период.
- How much does it cost to implement a sand hole prevention system, и какова рентабельность инвестиций?
A basic system (inert gas protection + фильтр + mold upgrade) расходы \(15,000- )30,000 for a mid-sized die caster. For a facility producing 10,000 частей/день (scrap rate reduced from 10% к 1.5%), the ROI is ~6 months—savings from reduced scrap and rework far outweigh the investment.
- Do sand hole prevention measures work for all die cast alloys?
Да, but adjustments are needed: Для магниевых сплавов (flammable), use nitrogen instead of argon for protection; for copper alloys (высокая точка плавления), increase mold preheating to 280–320°C. The core logic—gas control + inclusion removal + process stability—applies universally. We tailor solutions to each alloy’s unique properties.