The precision walking machine (универсальный, multi-functional machining equipment) plays a pivotal role in prototype model production. It combines the advantages of поворот, фрезерование, и бурение, enabling high-accuracy machining of complex prototype parts—often with tolerances as tight as ±0.005 mm. Whether for automotive test components or medical device prototypes, mastering the walking machine’s machining process ensures your prototype meets design goals while saving time and cost. This guide breaks down every key stage, from machine selection to surface finish, to help you avoid common pitfalls.
1. Machine Tool Selection: Закладывая основу для точности
Choosing the right walking machine is the first critical step—its machine accuracy, жесткость, and capacity directly impact prototype quality. Not all walking machines are equal; your choice depends on the prototype’s size, сложность, and tolerance requirements.
Тип машины | Ключевые функции | Ideal Prototype Scenarios | Советы по выбору |
CNC Walking Lathe | Combines turning and milling; 2-4 топоры; compact design. | Small cylindrical prototypes (НАПРИМЕР., валы, Небольшие шестерни) with minor milling features. | Расставить приоритеты machine accuracy (positional accuracy ≤±0.003 mm) for tight-tolerance parts. |
CNC Walking Milling Machine | Focuses on milling; 3-5 топоры; supports complex 3D machining. | Prototypes with irregular shapes (НАПРИМЕР., automotive bracket prototypes, medical implant models). | Проверять machine rigidity—look for a heavy-duty base to reduce vibration during high-speed cutting. |
Hybrid Walking Machine | Integrates turning, фрезерование, и шлифование; Многоосная связь. | Complex prototypes needing multiple processes (НАПРИМЕР., aerospace component prototypes with both cylindrical and flat features). | Ensure machine capacity (workpiece weight ≤50 kg for most prototypes) matches your part size. |
Grinding-Equipped Walking Machine | Adds grinding function; ideal for finish machining. | Prototypes requiring ultra-smooth surfaces (НАПРИМЕР., precision bearing prototypes). | Verify grinding spindle runout (≤0,001 мм) to guarantee surface quality. |
Quick Tip: Для ранних стадий прототипов (where tolerance can be ±0.01 mm), a basic 3-axis CNC walking lathe/milling machine works. For final validation prototypes (needing ±0.002 mm tolerance), invest in a hybrid walking machine with high rigidity.
2. Machining Process Planning: Streamlining Prototype Production
A well-designed process plan avoids rework and cuts machining time by 20-30%. It’s all about arranging the right operations in the right order and optimizing each step.
Core Steps in Process Planning
- Process Sequence: Follow the “rough machining → semi-finish machining → finish machining” rule. Например, when making a gear prototype:
- Rough turn the outer diameter (remove 80% избыточного материала).
- Semi-mill the gear teeth (leave 0.1-0.2 mm machining allowance).
- Finish turn and mill to reach final dimensions.
Почему? Rough machining removes material fast; finish machining ensures precision without wasting time on excess material.
- Стратегия обработки:
- Для простых прототипов (НАПРИМЕР., плоские тарелки): Use “layered cutting” (cut layer by layer along the Z-axis).
- For complex 3D prototypes (НАПРИМЕР., curved medical parts): Adopt “adaptive clearing” (the machine adjusts cutting path based on part shape to reduce tool wear).
- Operation Planning: Combine similar operations. Например, do all drilling first (using the same tool) before switching to milling—this reduces tool change time by 15%.
- Моделирование процесса: Use software like Mastercam or UG to simulate the entire process. This catches collisions (НАПРИМЕР., tool hitting the fixture) and identifies inefficient paths. Тематическое исследование: A team simulated the machining of an automotive sensor prototype and optimized the path, cutting the machining cycle от 45 минуты до 32 минуты.
Советы по оптимизации процессов
- Prioritize critical features: Machine the prototype’s key surfaces (НАПРИМЕР., a medical part’s contact surface) first—this ensures they’re not damaged in later operations.
- Avoid over-processing: Для ранних прототипов, skip unnecessary finish steps (НАПРИМЕР., fine grinding) if surface roughness Ra ≤1.6 μm is enough.
3. Точный контроль: Ensuring Prototype Accuracy
Precision is the soul of prototype machining—even a 0.005 mm deviation can make a prototype fail fit tests. Precision control covers tolerance, измерение, and real-time adjustments.
Key Control Measures
Control Aspect | Specific Actions | Tools/Standards |
Контроль толерантности | Set reasonable tolerances based on prototype stage: – Early prototype: ±0.01-±0.02 mm – Final prototype: ±0.002-±0.005 mm | Следуйте за ISO 286-1 (tolerance standard) to define limits. |
Positioning Accuracy | Calibrate the walking machine weekly: – Check axis backlash (adjust if >0.002 мм) – Verify spindle concentricity (runout ≤0.001 mm) | Use a laser interferometer for calibration. |
Повторяемость | Test the machine’s repeatability (ability to produce the same result repeatedly): – Машина 10 identical prototype features – Measure each with a micrometer – Ensure deviation ≤±0.003 mm | Цифровой микрометр (accuracy ±0.001 mm). |
Precision Inspection | Do in-process inspection: – After rough machining: Check dimension allowance (гарантировать 0.1-0.2 mm left for finish machining) – After finish machining: Full inspection of key features | Координировать измерительную машину (ШМ) for complex prototypes; optical measuring instrument for small parts. |
Вопрос: Why does my prototype’s dimension drift after machining?
Отвечать: It’s likely due to thermal deformation (the walking machine heats up during long cycles). Solve it by: 1) Preheating the machine for 30 minutes before machining; 2) Adding a cooling system to the spindle; 3) Doing finish machining in the morning (lower ambient temperature reduces thermal impact).
4. Материальные соображения: Matching Material to Prototype Needs
The right material ensures the prototype behaves like the final part—without wasting money on overpriced options. Выбор материала balances properties, механизм, и стоимость.
Common Prototype Materials & Советы по обработке
Тип материала | Примеры | Ключевые свойства | Механизм | Walking Machine Tips |
Металлы | Алюминий 6061, Мягкая сталь 1018 | Алюминий: Легкий вес, Хорошая теплопроводность; Сталь: Высокая сила. | Алюминий (отличный); Сталь (good) | Для алюминия: Use high spindle speed (2000-3000 об/мин) to reduce chip buildup. For steel: Use carbide tools and coolant to prevent tool wear. |
Сплавы | Титановый сплав Ti-6Al-4V, Нержавеющая сталь 304 | Титан: Высокое соотношение прочности к весу; Нержавеющая сталь: Коррозионная устойчивость. | Титан (poor); Нержавеющая сталь (справедливый) | Lower feed rate (50-100 мм/мин) for titanium to avoid tool overheating. Для нержавеющей стали: Use sharp tools to reduce work hardening. |
Пластмассы | АБС, Заглядывать | АБС: Легко в машине, бюджетный; Заглядывать: Высокая температурная стойкость. | АБС (отличный); Заглядывать (справедливый) | Для пресса: Используйте сжатый воздух (instead of coolant) Чтобы предотвратить плавление. Для PEEK: Используйте высокоскоростную сталь (HSS) tools and slow spindle speed (800-1200 об/мин). |
Композиты | Carbon Fiber-Reinforced Polymer (CFRP) | Высокая сила, легкий вес. | Справедливый (fibers wear tools fast) | Use diamond-coated tools and low cutting speed (500-800 об/мин) to avoid fiber fraying. |
Material-Related Pitfalls to Avoid
- Material deformation: For thin-walled prototypes (толщина стены <1 мм), choose materials with low thermal expansion (НАПРИМЕР., invar alloy) to prevent warping during machining.
- Material surface quality: If the prototype needs a smooth surface, avoid materials with inclusions (НАПРИМЕР., low-grade steel)—they cause surface blemishes.
- Стоимость материала: Для ранних прототипов, use aluminum instead of titanium (расходы 1/5 of titanium) unless strength testing is critical.
5. Fixture Design: Securing Prototypes for Stable Machining
A good fixture holds the prototype tightly (no movement during cutting) while protecting its surface. Fixture design focuses on stability, точность, и простота использования.
Fixture Design Principles & Типы
- Ключевые принципы:
- Fixture stability: The fixture’s weight should be 3-5x the prototype’s weight (prevents vibration).
- Fixture precision: The fixture’s positioning error should be ≤1/3 of the prototype’s tolerance (НАПРИМЕР., for a ±0.006 mm prototype, fixture error ≤±0.002 mm).
- Fixture clamping force: Use just enough force to hold the part—too much (НАПРИМЕР., >500 N for plastic prototypes) causes deformation; too little leads to movement.
- Common Fixture Types for Walking Machine Prototypes:
- Vise Fixtures: Ideal for flat or rectangular prototypes (НАПРИМЕР., bracket models). Используйте мягкие челюсти (rubber or aluminum) for plastic parts to avoid scratches.
- Chuck Fixtures: For cylindrical prototypes (НАПРИМЕР., shaft models). 3-jaw chucks work for symmetric parts; 4-jaw chucks for irregular cylindrical parts.
- Custom Fixtures: Для сложных прототипов (НАПРИМЕР., Изогнутые аэрокосмические детали). Design with quick-release mechanisms to reduce setup time (от 20 минуты до 5 минуты на прототип).
Пример: When machining a thin-walled plastic prototype (толщина стены 0.8 мм), a team used a custom fixture with multiple small clamping points (instead of one large clamp). This reduced deformation from 0.01 мм до 0.003 мм, meeting the prototype’s tolerance requirement.
6. Генерация пути инструмента: Optimizing Cutting Paths for Efficiency
Tool path generation is like planning a road trip—an efficient path saves time and reduces wear. It’s done via CAM software and directly affects machining speed and prototype quality.
Key Steps in Tool Path Generation
- Tool Path Planning:
- Для грубой обработки: Use “zigzag” paths (covers large areas fast) удалить лишний материал.
- For finish machining: Use “contour-parallel” paths (follows the part’s shape) to ensure smooth surfaces.
- Оптимизация пути инструмента:
- Minimize rapid moves (the machine’s fast, non-cutting movement) by arranging paths close together.
- Avoid sharp turns (угловой <90°) — they cause tool vibration. Replace with rounded turns (radius ≥1 mm).
- Выбор программного обеспечения:
- Для простых прототипов: Use entry-level software like BobCAD-CAM (Легко учиться, бюджетный).
- For complex 3D prototypes: Use advanced software like Siemens NX (supports multi-axis path generation and tool path simulation).
Tool Path Accuracy & Efficiency Tips
- Tool path accuracy: Set the path tolerance to 1/10 of the prototype’s tolerance (НАПРИМЕР., ±0.005 mm prototype → path tolerance ±0.0005 mm).
- Tool path efficiency: For batch prototype production (10-20 части), use “batch processing” in CAM software—generate paths for all parts at once, сохранение 1-2 hours of setup time.
7. Поверхностная отделка: Enhancing Prototype Appearance and Performance
Поверхностная отделка isn’t just about looks—it affects the prototype’s functionality (НАПРИМЕР., a rough surface increases friction in moving parts). It’s measured by шероховатость поверхности (Ra value) and controlled via machining methods and post-treatment.
Surface Finish Standards & Методы
Surface Finish Requirement | Ra value | Метод обработки | После лечения |
Базовый (Функциональные прототипы) | 1.6-6.3 мкм | Standard finish machining (Скорость шпинделя 1500-2000 об/мин, скорость корма 100-150 мм/мин) | Выслушивание (remove sharp edges with a file or rotary brush) |
Середина (appearance prototypes) | 0.8-1.6 мкм | High-speed finish machining (Скорость шпинделя 3000-4000 об/мин, скорость корма 50-100 мм/мин) | Песчаная обработка (for uniform matte finish) |
Высокий (precision prototypes) | 0.02-0.8 мкм | Walking machine grinding + honing | Полировка (use abrasive paste with 1000-grit sandpaper) или Поверхностная обработка (НАПРИМЕР., anodizing for aluminum prototypes) |
Surface Finish Inspection
- Используйте surface roughness meter to measure Ra value—place the probe on the prototype’s key surface (НАПРИМЕР., a medical part’s contact area) and record the reading.
- For appearance prototypes, do a visual inspection under natural light—check for scratches, Оценки инструмента, или неровная текстура.
Для чаевого: To get a high-gloss finish on plastic prototypes, use a ball-end mill for finish machining (reduces tool marks) and apply a clear coat after machining.
Yigu Technology’s View
В Yigu Technology, we see precision walking machine prototype machining as a synergy of planning and execution. We select hybrid walking machines (±0.002 mm accuracy) for complex prototypes, pair them with custom fixtures to cut deformation, and use AI-powered CAM software for tool path optimization. For material challenges like titanium, we use diamond tools and thermal control. Our focus is on delivering prototypes that mirror final parts—accurate, функциональный, and cost-effective—helping clients speed up product development.
FAQs
- Q.: How to choose between a CNC walking lathe and milling machine for my prototype?
А: Pick a CNC walking lathe for cylindrical prototypes (НАПРИМЕР., валы) with simple features. Choose a CNC walking milling machine for irregular or 3D-shaped prototypes (НАПРИМЕР., скобки). For parts with both cylindrical and flat features, use a hybrid walking machine.
- Q.: Why does my prototype have poor surface finish even with high-speed machining?
А: Common causes: 1) Dull tool (replace with a new carbide/ diamond tool); 2) Too high feed rate (reduce to 50-100 mm/min for finish machining); 3) Вибрация (use a heavier fixture or add damping pads to the walking machine).
- Q.: How to reduce machining time for prototype batches (10-15 части) не теряя точность?
А: 1) Оптимизируйте траектории инструмента (minimize rapid moves via CAM software); 2) Batch similar operations (НАПРИМЕР., drill all parts first, then mill); 3) Use a quick-change fixture (cuts setup time per part from 10 mins to 2 мин).