When choosing a 3D печатный материал, heat resistance temperature is far more than a technical detail—it directly determines whether the final part can withstand real-world conditions, from daily use (НАПРИМЕР., a PLA cup near a coffee maker) to industrial applications (НАПРИМЕР., a PC component in a car engine bay). This article breaks down the key heat resistance metrics of 8 общие материалы, explains how to use this data, and solves common material-selection mistakes.
1. Core Heat Resistance Metrics: What Do They Actually Mean?
Прежде чем сравнивать материалы, it’s critical to understand the two most important heat-related terms—confusing them often leads to failed prints or unusable parts. Below is a simple breakdown using a “question-and-answer” структура:
Показатель | Определение | Practical Significance |
Температура термической деформации (TDT) | The temperature at which a material bends or deforms under a fixed load (обычно 1.82 MPa for 3D printing). | This is the “safe upper limit” для большинства частей. If your part will be exposed to temperatures above its TDT (НАПРИМЕР., a PLA phone stand near a 70°C laptop vent), it will warp or lose shape. |
Vitrification Transition Temperature (Тг) | For amorphous materials (НАПРИМЕР., Плата), this is the temperature where the material softens from a “glassy” state to a “rubbery” состояние (no melting, just flexibility). | A PLA part with a Tg of 55–65°C will feel soft and bendable if left in a hot car (where interior temps can reach 60°C+), even if it doesn’t melt. |
Точка плавления / Complete Melting Temperature | The temperature at which a crystalline material (НАПРИМЕР., АБС, А) fully turns from solid to liquid. | This is the minimum temperature your 3D printer’s nozzle needs to reach to print the material. It also tells you the “absolute failure point”—exposing a printed part to this temperature will destroy it. |
Long-Term Use Temperature | The maximum temperature a material can withstand continuously (НАПРИМЕР., 8 часы в день, 5 days a week) без ухудшения. | A PETG part with a long-term use temperature of ≤100°C is safe for a water bottle that holds 95°C hot water, but not for a part in a 110°C oven. |
2. Heat Resistance Comparison of 8 Common 3D Printing Materials
The table below organizes the key heat data for 8 widely used materials, sorted from lowest to highest thermal deformation temperature (TDT) for easy comparison. All values are based on standard 3D printing grades (not industrial modified versions).
Материал | Температура термической деформации (° C.) | Key Additional Heat Metrics | Лучше всего для (Based on Heat Resistance) |
Плата | N/a (uses Tg instead) | Тг: 55–65°C; Softening temp: 170–230 ° C. | Приложения с низким нагреванием: декоративные модели, non-heated food containers, or parts used indoors (20–25 ° C.). |
ТПУ | N/a (elastic material) | Thermal decomposition temp: 200–250 ° C.; Long-term use temp: 80–100 ° C. | Flexible parts that avoid high heat: Телефонные чехлы, Невещание обуви, or soft gaskets (not for use near heaters). |
Петг | 85–88°C | Long-term use temp: ≤100 ° C.; Max continuous service temp: 120–140 ° C. | Moderate-heat needs: бутылки с водой (holds hot drinks), lamp shades (near 60–80°C bulbs), or 3D printer enclosures. |
АБС | 70–105°C | Complete melting temp: 210–250 ° C. | Parts needing slight heat resistance: игрушечные машины (exposed to sunlight), basic tool handles (no prolonged contact with hot surfaces). |
Стр | 100–110 ° C. | Long-term use temp: ≤100 ° C. | Food-Safe, low-to-moderate heat parts: reusable containers (microwavable for short periods, <90° C.) or outdoor planters (resists summer heat). |
Акрил | 90–105°C | Softening temp: 100–120 ° C. | Transparent parts with mild heat resistance: отображать чехлы, clear model windows (not for use near stoves or heaters). |
ПК (Поликарбонат) | 135–145°C | Long-term operating temp: -40 to 130°C; Thermal decomposition temp: ≥300°C | High-heat, прочные детали: Компоненты автомобильной внутренней части (near 120°C vents), Светодиодные корпусы, или детали промышленных машин. |
А (Нейлон) | ≥220°C (НАПРИМЕР., ПА66: ~270°C) | Точка плавления: 210–230 ° C. | Extreme-heat industrial applications: Компоненты монтажа (withstands 180–200°C), high-temperature gaskets, or drone parts exposed to friction heat. |
3. How to Choose the Right Material Based on Heat Needs: 3 Step-by-Step Scenarios
Heat resistance data is only useful if you apply it to your specific project. Ниже 3 common real-world scenarios, each using a “linear 叙述” structure to guide material selection:
Сценарий 1: A Reusable Food Container (Needs to Hold 95°C Hot Soup)
- Define the heat requirement: Continuous exposure to 95°C (Нет деформации).
- Filter materials by key metric: Look for materials with a long-term use temperature ≥95°C или TDT ≥95°C.
- Eliminate PLA (Tg too low: 55–65°C) и Абс (TDT max 105°C, but long-term use temp untested for food).
- Final choice: Петг (long-term use temp ≤100°C, food-safe grades available) или стр (TDT 100–110°C, microwave-safe).
Сценарий 2: A 3D Printer Enclosure Panel (Needs to Withstand 120°C Nozzle Heat)
- Define the heat requirement: Resist intermittent 120°C heat (from the printer’s nozzle) без деформации.
- Filter materials by key metric: Расставить приоритеты max continuous service temp ≥120°C или TDT ≥120°C.
- Eliminate PETG (max continuous temp 120–140°C, but TDT 85–88°C—risk of deformation under slight pressure).
- Final choice: ПК (TDT 135–145°C, воздействие) или PA (TDT ≥220°C, Но дороже).
Сценарий 3: A Decorative Desk Organizer (Only Exposed to 20–25°C Indoor Heat)
- Define the heat requirement: No special heat needs—focus on cost and printability.
- Filter materials by key metric: Any material with Tg/TDT above 25°C (all common materials qualify).
- Final choice: Плата (бюджетный, легко печатать, Не нужно подогрев.) или TPU (if you want a soft, flexible organizer).
4. Yigu Technology’s Perspective on Material Heat Resistance
В Yigu Technology, Мы видели 60% of client part failures stem from mismatched heat resistance—e.g., an automotive client once used ABS for a 110°C engine component (ABS’s max TDT is 105°C), leading to a production delay. Чтобы решить эту проблему, we integrate two tools into our workflow: 1) а material heat-resistance database (updated with 50+ оценки) to help clients select materials in 5 минуты; 2) pre-print heat tests (НАПРИМЕР., exposing sample parts to target temps for 24 часы) Чтобы проверить производительность. Для пользователей, understanding heat resistance isn’t just about specs—it’s about ensuring parts work as intended, каждый раз.
Часто задаваемые вопросы: Common Questions About 3D Printing Material Heat Resistance
- Q.: Can I increase a material’s heat resistance after printing (НАПРИМЕР., coating PLA)?
А: Да, но лишь слегка. Например, applying a heat-resistant spray (НАПРИМЕР., Krylon High Heat) can raise PLA’s Tg by 5–10°C, but it won’t make it match PETG. For high-heat needs, choose the right material from the start.
- Q.: Why does my ABS part warp even though it’s below its TDT (70–105°C)?
А: ABS is sensitive to изменения температуры, not just high temps. If one side of the part is near a cold window (20° C.) and the other near a heater (30° C.), the uneven expansion will cause warping—even at temps well below its TDT.
- Q.: Является “long-term use temperature” the same as “max continuous service temperature”?
А: Almost—they refer to the same concept (sustained heat resistance). The only difference: “long-term use temperature” is often used for consumer parts (НАПРИМЕР., PETG bottles), пока “max continuous service temperature” is more common for industrial materials (НАПРИМЕР., PC for car parts).