Types of prototypes refer to the classification of physical models based on production processes, Materiais, functions, and uses—each type serves unique purposes in product development, from verifying appearance to testing mass production feasibility. Choosing the correct prototype type is critical for reducing development costs, accelerating iteration cycles, and ensuring alignment with final product goals. This article systematically breaks down the core categories of prototypes, suas características, applicable scenarios, and selection guidelines to help teams make informed decisions.
1. Classification by Production Process
Prototypes differ significantly in precision, custo, and lead time based on how they are manufactured. This classification is the most common starting point for prototype selection.
Tipo de protótipo | Características do núcleo | Step-by-Step Production Flow | Applicable Scenarios | Principais vantagens |
3D Printing Prototype | – Suitable for superfícies curvas complexas e estruturas ocas (Por exemplo, internal cavities of a smartphone case).- Materiais: PLA, Abs, resina, nylon (supports personalized customization).- Custo: Baixo (≈ (5- )50 per unit for small batches).- Tempo de espera: Rápido (4–24 horas por parte). | 1. Export 3D CAD models to STL format.2. Optimize settings: Espessura da camada (0.1–0.2mm), preenchimento (10–30%).3. Print with FDM (PLA/ABS) ou sla (resina).4. Remove supports and sand surface lines. | – Eletrônica de consumo (earbud shells, smartwatch frames).- Brinquedos (action figure prototypes with intricate details).- Artworks and medical models (anatomical replicas). | – No mold required (low upfront investment).- Ideal for rapid iteration (1–10 unidades).- Captura detalhes finos (Por exemplo, 0.5mm-thick texture patterns). |
CNC Machining Prototype | – Precisão ultra alta (tolerância: ± 0,05 mm) e acabamento superficial liso (Ra 1.6–3.2μm).- Materiais: Mostly metals (liga de alumínio, cobre) ou plásticos rígidos (Pom, acrílico).- Custo: Medium to high (≈ (20- )200 por unidade).- Tempo de espera: 1–3 days per part. | 1. Convert 3D models to G-code (using Mastercam or UG).2. Secure material blocks (metal/plastic) to the CNC machine bed.3. Machine with optimized toolpaths (cutting depth: 0.1–0,5 mm por passe).4. Sand or polish to remove tool marks. | – Peças mecânicas (engrenagens, shafts for industrial equipment).- Auto Peças (aluminum alloy brackets, Altas do sensor).- Eletrônicos de ponta (precision connectors for laptops). | – Durable for functional testing (Por exemplo, load-bearing of a drone frame).- Matches mass production material properties (critical for performance validation). |
Silicone Duplicate Prototype | – Based on a mestre mofo (3D-printed or CNC-machined) for replication.- Materiais: PU Resina, epóxi, soft glue (TPU) (simulates rubber or plastic textures).- Batch Capacity: Até 50 unidades (cost-effective for small-batch trials).- Tempo de espera: 3–5 dias (including mold making). | 1. Make a high-quality master prototype (Por exemplo, CNC-machined acrylic).2. Pour liquid silicone (viscosity 500–2000 cP) around the master to create a mold.3. Cure the mold at 25–80°C for 4–24 hours.4. Inject PU resin/epoxy into the mold and demold after curing. | – Soft parts (chaveiros, TPU mobile phone cases).- Small-batch trial production (Por exemplo, 20 units of a toy car shell).- Parts requiring uniform texture (Por exemplo, rubber grips for tools). | – Low per-unit cost (≈ (3- )15 per copy).- Preserves master details (no loss of texture or dimension). |
Handmade Prototype | – High flexibility for artistic or special materials (madeira, clay, oil clay).- Relies on technician experience (skill-dependent quality).- Custo: Baixo (no equipment fees, but labor-intensive).- Tempo de espera: Lento (1–7 days per part). | 1. Select materials (Por exemplo, clay for sculpting, wood for carving).2. Shape manually with tools (carving knives, lixa, moldes).3. Finish with paint or polish (se necessário). | – Sculptures and film/television props (Por exemplo, a fantasy movie’s wooden weapon).- Modelos conceituais (early-stage design sketches turned physical).- Artisanal products (hand-carved wooden toys). | – No specialized equipment required.- Easy to modify on the spot (Por exemplo, adjusting a clay model’s shape). |
2. Classification by Material
The material of a prototype directly impacts its strength, aparência, and functionality—this classification is critical for matching prototype performance to final product requirements.
Tipo de protótipo | Material Examples | Core Features | Applicable Scenarios | Limitações |
Plastic Prototype | Abs, computador, Pom, acrílico, PLA | – Leve (densidade: 0.9–1.2 g/cm³) and easy to process.- Supports surface treatments (spraying, Eletroplatação, Triagem de seda).- Custo: Baixo a médio (≈ (5- )50 por unidade). | – Most consumer products (plastic toy shells, PC laptop housings).- Parts requiring corrosion resistance (acrylic display cases).- Non-load-bearing components (ABS phone stand). | – Lower strength than metal (not suitable for heavy-load testing).- Alguns plásticos (PLA) deform at high temperatures (>60° c). |
Metal Prototype | Liga de alumínio (6061, 7075), aço inoxidável (304, 316), cobre | – Alta resistência (aluminum alloy tensile strength: 200–300 MPa) and good texture.- Excellent heat and corrosion resistance (stainless steel for outdoor parts).- Custo: Alto (≈ (50- )300 por unidade). | – Componentes de carga de carga (automotive suspension brackets).- Precision equipment (copper connectors for electronics).- Peças de máquinas industriais (stainless steel gears). | – Pesado (densidade: 2.7–8.9 g/cm³) — not ideal for portable products.- Long production time (CNC machining requires complex toolpaths). |
Soft Rubber Prototype | TPU, silicone, PVC macio | – Flexível (Shore uma dureza: 20–50) and non-slip.- Boa elasticidade (recovers shape after compression).- Custo: Médio (≈ (10- )60 por unidade). | – Garras (alças da ferramenta, bike handlebars).- Sealing rings (waterproof gaskets for smartwatches).- Soft toy parts (silicone doll limbs, TPU toy wheels). | – Low rigidity — not suitable for structural components.- May degrade over time (exposed to sunlight or oil). |
Resin Prototype | Resina epóxi, Resina de poliuretano | – Transparent or translucent (Transmitância de luz: 80–90% for clear resin).- Superfície lisa (no post-processing needed for SLA-printed resin).- Custo: Médio (≈ (15- )80 por unidade). | – Imitation glass/crystal products (resin lamp shades, Exibir casos).- Modelos médicos (transparent anatomical replicas).- High-gloss decorative parts (resin toy eyes, jewelry prototypes). | – Frágil (prone to cracking under impact).- Some resins are not heat-resistant (>80°C may warp). |
3. Classification by Function
Prototypes are designed to validate specific aspects of a product—this classification ensures alignment with development goals (Por exemplo, appearance vs. funcionalidade).
Tipo de protótipo | Core Objective | Principais características | Applicable Scenarios | Validation Methods |
Appearance Prototype | Verificar forma, cor, textura, and assembly effect (no focus on internal structure). | – Focus on surface treatment (spraying, Eletroplatação, jato de areia).- Internal structure can be simplified (Por exemplo, hollowed-out to reduce cost).- Low precision for non-visible dimensions (tolerância: ± 0,5 mm). | – Eletrônica de consumo (smartphone back covers, Cascas de tablets).- Peças externas automotivas (headlight casings, bumper prototypes).- Home appliance panels (refrigerator door fronts, washing machine control panels). | – Inspeção visual (check color uniformity, texture consistency).- Stakeholder feedback (Por exemplo, “Does the texture match brand guidelines?”). |
Structural Prototype | Teste assembly logic, mobility, e estabilidade estrutural (Por exemplo, folding, rotating). | – Exact dimensions required (tolerância: ± 0,1 mm) to simulate mass production. | – Robots (joint mobility, arm folding structure). | – Assembly testing (check if parts fit without force, no interference). |
– May include simple mechanical structures (dobradiças, Fivelas) but no electronic components. | – Dispositivos médicos (adjustable wheelchair armrests, alças de ferramentas cirúrgicas).- Household products (folding chairs, detachable storage boxes). | – Mobility testing (Por exemplo, fold a chair 100 times to check for looseness).- Load testing (apply weight to verify structural strength). | ||
Protótipo funcional | Validate the core functions of the product (circuitry, hydraulics, optics). | – Integrated with electronic modules, sensores, or mechanical systems.- Close to the finished product form (internal structure and external appearance are complete).- High precision for functional components (tolerância: ± 0,05 mm). | – Intelligent hardware (smart speakers with voice recognition, wearable fitness trackers).- Equipamento industrial (hydraulic valve prototypes, optical lens holders).- Scientific research instruments (sensor prototypes for environmental monitoring). | – Teste funcional (Por exemplo, “Does the sensor detect temperature accurately?”).- Testes ambientais (simulate high/low temperatures, humidity to check function stability). |
4. Classification by Use
This classification focuses on the prototype’s role in the product development lifecycle—from early design to pre-mass production.
Tipo de protótipo | Função central | Principais recursos | Applicable Stages |
Design Verification Prototype | Confirm appearance design, size ratio, and human-computer interaction. | – Produção rápida (3D printing or handmade).- Baixo custo (simplified structure).- Easy to modify (supports iterative design). | Early design stage (after 2D drawings, before structural finalization). |
Assembly Verification Prototype | Teste fit between parts, screw hole position, and buckle structure. | – Parts are split to simulate mass production assembly process.- No need for surface treatment (focus on fit, not appearance). | Mid-development stage (after structural design, before functional testing). |
Mass Production Test Prototype | Validar production process feasibility (moldagem por injeção, estampagem) and material stability. | – Uses the same materials and processes as mass production.- Alta precisão (matches mass production standards).- Batch production possible (10–50 unidades) to test process consistency. | Late development stage (before opening mass production molds). |
5. Special Types of Prototypes
These prototypes are designed for unique scenarios (Por exemplo, transparência, resistência à alta temperatura) and address niche product requirements.
Tipo de protótipo | Materiais | Core Features | Applicable Scenarios |
Transparent Prototype | Acrílico, computador, clear resin | – High light transmittance (acrílico: 92%, computador: 89%).- Supports polishing to enhance clarity (no cloudiness). | – Lamps (acrylic lamp shades, resin light guides).- Display frames (transparent phone cases, museum exhibit holders).- Dispositivos médicos (transparent IV fluid containers, alças de instrumentos cirúrgicos). |
High-Temperature Resistant Prototype | PA (Nylon), PPA, metal (aço inoxidável, liga de titânio) | – Suporta altas temperaturas (PA: 150–200 ° C., metal: 500° C+).- No deformation or performance loss in high-heat environments. | – Peças automotivas do motor (Bandezas de petróleo, tampas da válvula).- Industrial ovens (high-temperature sensor housings).- Componentes aeroespaciais (small satellite parts). |
Simulation Prototype | Silicone, foam material, borracha macia | – Simulates soft touch (Por exemplo, human skin, foam cushions).- Flexible and compressible (mimics real-world tactile feedback). | – Brinquedos (silicone doll skin, foam puzzle mats).- Modelos médicos (silicone human organ replicas for training).- Produtos de consumo (foam ear tips for headphones, soft rubber grips). |
6. How to Choose the Right Type of Prototype?
Use this step-by-step guide to select the optimal prototype based on your goals, orçamento, e linha do tempo.
6.1 By Development Goal
Meta | Recommended Prototype Type | Exemplo |
Appearance Validation | 3D printing prototype (resina) + spraying/electroplating. | A resin smartphone back cover prototype sprayed with matte black paint to test color. |
Structural Stability Testing | Protótipo de usinagem CNC (metal/plastic) + teste de montagem. | A CNC-machined aluminum alloy drone frame to test load-bearing capacity. |
Small-Batch Trial Production | Silicone duplicate prototype (PU Resina). | 30 PU resin toy car shells replicated from a 3D-printed master. |
6.2 By Budget
Budget Range | Recommended Prototype Type | Razão |
Baixo (\(5- )50) | 3D printing prototype (PLA/ABS) or handmade prototype. | No mold fees and low material costs. |
Médio (\(50- )200) | Protótipo de usinagem CNC (plástico) or silicone duplicate prototype. | Balances precision and cost for functional testing. |
Alto ($200+) | Protótipo de usinagem CNC (metal) or mass production test prototype. | Ensures compatibility with mass production processes (Por exemplo, moldagem por injeção). |
6.3 By Timeline
Timeline | Recommended Prototype Type | Tempo de espera |
Urgent (1–2 dias) | 3D printing prototype (FDM/SLA). | 4–24 horas por parte. |
Normal (3–7 dias) | Silicone duplicate prototype or CNC machining prototype (plástico). | 3–5 dias (silicone) or 1–3 days (CNC plastic). |
No Rush (1–2 semanas) | Protótipo de usinagem CNC (metal) or mass production test prototype. | 5–10 dias (CNC metal) or 7–14 days (mass production test). |
Perspectiva da tecnologia YIGU
Na tecnologia Yigu, we see choosing the right type of prototype as a “cost-saving catalyst” for product development. Too many clients waste resources on over-precise prototypes (Por exemplo, CNC metal for appearance testing) or underperform ones (Por exemplo, 3D-printed PLA for high-temperature parts). Our approach: We first clarify the client’s core goal—Is it appearance, função, or mass production feasibility? Por exemplo, a startup needing 5 action figure prototypes in 3 days gets 3D-printed resin prototypes (rápido, detalhado), while an auto parts maker validating engine components gets high-temperature resistant PA prototypes. We also prioritize material-process matching—e.g., using silicone duplicates for soft parts to avoid CNC’s rigidity. By aligning prototype type with goals, we help clients cut rework costs by 40% and speed up development by 30%.
Perguntas frequentes
- Can I use a 3D printing prototype for mass production feasibility testing?
No—3D printing prototypes use different processes (layer-by-layer deposition) than mass production (moldagem por injeção, estampagem), so they can’t validate mold compatibility or process stability. For mass production testing, use a prototype made with the same process as final production (Por exemplo, injection-molded plastic prototypes).
- What’s the best prototype type for a transparent product (Por exemplo, a clear lamp shade)?
Choose a transparent prototype made from acrylic, computador, or clear resin. For early appearance testing, use 3D-printed clear resin (rápido, baixo custo). Para testes funcionais (Por exemplo, Transmitância de luz), use CNC-machined acrylic (higher precision and better material stability).
- Is a handmade prototype suitable for functional testing?
Rarely—handmade prototypes rely on technician skill, so their dimensions and structure are inconsistent (tolerância: ±1–5mm). They are best for early concept verification (Por exemplo, a clay model of a toy) but not for functional tests (Por exemplo, checking if a hinge rotates smoothly). Para testes funcionais, use 3D-printed or CNC-machined prototypes.