What Is the Step-by-Step Process of Making Rubber Prototypes?

Impressão 3D dental

Rubber prototypes—crafted from materials like silicone, TPE, TPU, and natural rubber—are critical for validating product functions like elasticity, sealing, and slip resistance. Unlike plastic or metal prototypes, their production requires specialized mold-making and molding processes to leverage rubber’s unique flexible properties. This article breaks down the full process from demand analysis to final testing, with comparisons, technical tips, and real-world examples to help you avoid common pitfalls and create high-quality rubber prototypes.

1. Pré-produção: Define Requirements & Plan Design

Before starting fabrication, clarify testing goals and design parameters to ensure the prototype aligns with your needs. This stage lays the foundation for material selection and process choice.

1.1 Clarify Core Requirements

Rubber prototypes serve three key validation purposes—focus on these to guide your design:

Categoria de RequisitoKey Test GoalsExemplo do mundo real
Validação funcionalTest elasticity (Por exemplo, “Can the waterproof ring bounce back after compression?”), sealing (Por exemplo, “Does it prevent water leakage?”), and slip resistance (Por exemplo, “Does the grip stay secure when wet?”).A phone manufacturer tests a silicone waterproof ring prototype to ensure it seals the charging port during 30-minute water submersion.
Material Property TestingVerify temperature resistance (Por exemplo, “Will it withstand -30°C to 150°C for automotive use?”), resistência ao desgaste (Por exemplo, “Does the tire tread avoid tearing?”), e dureza (30°–70° Shore).An outdoor gear brand tests a TPE grip prototype to confirm it retains flexibility after 1,000 horas de exposição UV.
Structural CompatibilityEnsure rubber parts assemble with metal/plastic components (Por exemplo, “Does the rubber slot fit the plastic housing?”) and optimize thickness/chamfers to prevent deformation.A medical device team adjusts the thickness of a silicone tube prototype from 1mm to 1.5mm to avoid kinking when connected to a plastic connector.

1.2 Design 3D Models with Rubber-Specific Rules

Use o software CAD (SolidWorks, Gosto, e) Para criar um modelo digital, focusing on parameters unique to rubber:

Design ParameterRequisitos & PontasRazão
Taxa de encolhimentoAccount for rubber’s natural shrinkage (1.02–1,05%: silicone = 1.03%, polyurethane = 1.02%).Prevents dimensional errors—e.g., a 100mm waterproof ring will shrink to 97mm if using silicone; model it as 103mm initially.
Grossura & ChamfersKeep thickness 0.5–5mm (too thin = easy tearing; too thick = slow curing). Add 0.5–1mm chamfers to edges.A silicone shock pad prototype with 0.8mm chamfers avoids cracking when compressed, unlike a sharp-edged version that breaks after 50 prensas.
Anti-Slip Patterns & BuracosMark anti-slip textures (Por exemplo, grid patterns for grips) and assembly holes (Por exemplo, 2mm diameter for screws) with clear coordinates.A power tool handle prototype with 0.5mm-deep grid patterns passes slip tests—users report 40% less hand fatigue than a smooth-surface version.

1.3 Split Complex Parts (Se necessário)

For curved or thin-walled rubber parts (Por exemplo, a U-shaped sealing strip), split the 3D model into sections. This simplifies mold machining and prevents deformation during demolding. Por exemplo:

  • A curved silicone earbud prototype is split into “ear tip” and “body” sections—each fits into a smaller mold, reducing the risk of air bubbles compared to a single large mold.

2. Fabricação de mofo: Choose the Right Method for Your Batch & Precisão

Protótipos de borracha exigem moldes personalizados – selecione entre moldes usinados em CNC e moldes impressos em 3D com base nas necessidades de precisão e no volume de produção.

Tipo de moldeDetalhes do processoVantagensDesvantagensIdeal para
Molde usinado CNCUse CNC para gravar blocos de aço ou alumínio; polir a superfície para Ra0,8 – Ra1,6 para reduzir o atrito de desmoldagem.Alta precisão (± 0,05 mm), reutilizável (500+ ciclos), adequado para borrachas duras como EPDM.Alto custo (\(500- )2,000 por molde), prazo de entrega lento (3–5 dias).Pequenos lotes (10–100 unidades) de peças de alta precisão (Por exemplo, selos de dispositivos médicos).
3Molde impresso DImprimir resina (SLA) ou nylon (SLS) moldes; pós-processamento com lixamento para superfícies lisas.Prazo de entrega rápido (1–2 dias), baixo custo (\(100- )300 por molde), fácil de modificar para formas complexas.Baixa durabilidade (20–50 ciclos), limited to soft rubbers like liquid silicone.Single or small batches (1–10 unidades) de partes complexas (Por exemplo, irregular-shaped TPU overlays).

Dica chave: Para prototipagem, start with a 3D-printed mold if you need to test 1–5 units quickly. Switch to a CNC mold if you require 20+ protótipos idênticos (Por exemplo, for user testing).

3. Molding Process: Select Based on Rubber Type & Tamanho da peça

The molding method determines the prototype’s precision, elasticidade, e custo. Choose from three common processes based on your material and application:

3.1 Liquid Silicone Injection Molding (LSR)

  • Applicable Materials: Liquid silicone (30°–70° Shore hardness).
  • Process Steps:
  1. Mix liquid silicone (Parte a + Part B) em um 1:1 razão.
  2. Inject the mixture into a preheated mold (150°C–200°C).
  3. Cure for 5–15 minutes (dependendo da espessura).
  4. Demold and trim excess material.
  • Vantagens: Alta precisão (ideal for micro-parts like phone waterproof rings), excellent elasticity, and no post-curing needed.
  • Ideal para: Transparent medical parts (Por exemplo, infusion tube fittings) and high-precision seals.

3.2 Solid Rubber Pressing

  • Applicable Materials: Natural rubber, EPDM, and silicone rubber sheets.
  • Process Steps:
  1. Cut rubber sheets into the approximate shape of the mold cavity.
  2. Heat the sheets to 120°C–180°C to soften them.
  3. Press the softened rubber into the mold with 10–20 MPa pressure.
  4. Cool for 10–20 minutes, then demold.
  • Vantagens: Baixo custo, fast for large parts (Por exemplo, automotive shock absorbing pads), and suitable for aging-resistant materials like EPDM.
  • Ideal para: Sealing strips (Por exemplo, Juntas de porta) and large slip-resistant mats.

3.3 Polyurethane Casting (UR)

  • Applicable Materials: Polyurethane elastomers (TPU, TPE).
  • Process Steps:
  1. Mix AB components (resina + hardener) em um 1:1 razão.
  2. Degas the mixture under vacuum (-0.1MPA) Para remover bolhas de ar.
  3. Pour the mixture into the mold slowly to avoid eddy currents.
  4. Curar à temperatura ambiente (24 horas) ou calor (80° C para 2 horas).
  • Vantagens: Mimics rubber’s flexibility, perfect for cladding metal/plastic parts (Por exemplo, power tool handles with metal cores).
  • Ideal para: Overmolded prototypes (Por exemplo, silicone-coated plastic buttons).

Tabela de comparação: Molding Process Selection Guide

Tipo de peçaRecommended ProcessExemplo de materialTempo de espera
Micro-seals (≤5 mm)LSRLiquid silicone1–2 dias
Large shock pads (≥200mm)Solid Rubber PressingEPDM2–3 dias
Overmolded gripsPolyurethane CastingTPU1–3 dias

4. Pós-processamento: Refine & Enhance Prototype Quality

Rubber prototypes require targeted post-processing to fix defects, melhorar o desempenho, and add functional details.

4.1 Basic Trimming & Deburrendo

  • Use a sharp blade or grinding wheel to remove excess rubber burrs (common around mold edges). For small parts like silicone earbuds, use tweezers to peel off tiny burrs—avoid sanding (it can damage soft rubber surfaces).

4.2 Vulcanização Secundária (For Silicone)

  • Bake silicone prototypes at 150°C–200°C for 2–4 hours. This step improves temperature resistance (por 30%) and aging resistance (extends lifespan by 50%), critical for automotive or outdoor use. Por exemplo:

A silicone automotive seal prototype, after secondary vulcanization, withstands 150°C for 1,000 hours without hardening—vs. 500 hours for an unprocessed version.

4.3 Tratamento de superfície

Add functional or decorative finishes based on your needs:

  • Anti-Slip Coating: Spray epoxy-based anti-slip paint on grips to boost friction (reduces slip by 60% for wet surfaces).
  • Impressão de seda: Apply logos, hardness labels (Por exemplo, “50° Shore”), or warning text (Por exemplo, “Medical Grade”).
  • Material Bonding: Use rubber-specific adhesives to attach rubber to metal/plastic (Por exemplo, a nylon + rubber overlay for a tool handle).

5. Teste & Otimização: Validate Performance & Fix Issues

Test the prototype against your initial requirements, and address common problems like bubbles or deformation.

5.1 Key Test Items

Tipo de testeComo realizarPass/Fail Criteria
Elasticity TestCompress the prototype to 50% of its thickness, release, and measure recovery time.Recovers to original shape in ≤1 second (Por exemplo, a shock pad prototype passes this test).
Sealing TestSubmerge the prototype in water (for waterproof parts) or apply air pressure (for airtight seals).No water leakage/air loss after 30 minutos.
Precisão dimensionalUse uma pinça para medir as principais dimensões (Por exemplo, diameter of a waterproof ring).Error within ±0.1mm (meets most industrial standards).

5.2 Solve Common Defects

DefeitoCausasCorreções
Demolding DifficultyHigh rubber elasticity, rough mold surface (Rá >1.6), Sem inclinação de rascunho.Polish mold to Ra ≤0.8; add 1°–3° draft slope; use silicone-specific release oil.
BolhasAir trapped in liquid rubber, fast pouring, no degassing.Degas rubber under -0.1MPA Vacuum; pour mixture slowly (≤5ml/second); use a mold with air vents.
Dimensional DeformationUneven mold temperature (±>5° c), incorrect shrinkage rate.Heat mold evenly (use a temperature-controlled oven); adjust 3D model size based on material shrinkage (Por exemplo, adicionar 3% for silicone).

6. Yigu Technology’s Perspective on Rubber Prototype Production

Na tecnologia Yigu, we’ve found that the biggest challenge in rubber prototype making is balancing flexibility with precision—many clients rush to choose LSR for high precision but overlook cost for small batches. Our approach is to match processes to needs: for 1–5 units of complex parts, we recommend 3D-printed molds + polyurethane casting (fast and cheap); para 10+ peças de alta precisão, CNC molds + LSR (durable and accurate). Por exemplo, a medical client initially chose LSR for a single silicone tube prototype (custo \(300), but we switched to 3D-printed molds + elenco (custo \)80) sem sacrificar a qualidade. We also emphasize pre-testing material compatibility—e.g., ensuring TPE bonds well with ABS before overmolding—to avoid rework. Rubber prototypes thrive on attention to detail; small adjustments (like adding a 2° draft slope) can save days of troubleshooting.

7. Perguntas frequentes: Common Questions About Making Rubber Prototypes

1º trimestre: Can I use 3D printing directly to make rubber prototypes (without molds)?

A1: Rarely—most 3D-printed “rubber-like” parts (Por exemplo, TPU filaments) lack the elasticity and sealing performance of true rubber. Molding processes (LSR, elenco) are needed to leverage rubber’s natural properties. For simple concept tests, 3D-printed TPU can work, but for functional validation, use mold-made rubber prototypes.

2º trimestre: How do I choose between silicone and TPE for my prototype?

A2: Choose silicone for high temperature resistance (até 200 ° C.) e transparência (Por exemplo, dispositivos médicos, phone waterproof rings). Choose TPE for better wear resistance and lower cost (Por exemplo, garras, peças de brinquedo). Por exemplo, a baby bottle nipple prototype uses silicone (não tóxico, resistente ao calor), while a toy car tire prototype uses TPE (mais barato, durável).

3º trimestre: Why does my rubber prototype have a sticky surface?

A3: Sticky surfaces are usually caused by incomplete curing (Por exemplo, LSR cured at 140°C instead of 160°C) or excess release oil. Correções: Re-cure the prototype at 160°C for 1 hora; wipe excess oil with a lint-free cloth. For silicone, secondary vulcanization also eliminates stickiness by removing residual low-molecular-weight compounds.

Índice
Role até o topo