O que é tecnologia de moldagem de silicone e suas principais aplicações?

usinagem cnc de poliéster pbt

A tecnologia de moldagem de silicone é um processo de fabricação que transforma borracha de silicone líquida (LSR) ou compostos de silicone sólido em produtos moldados com precisão por meio de cura controlada. Ele aproveita a elasticidade única do silicone, resistência ao calor, e biocompatibilidade para atender indústrias desde proteção de relíquias culturais até dispositivos médicos. Mas o que torna esta tecnologia versátil, como você seleciona os métodos certos […]

Silicone molding technology is a manufacturing process that transforms liquid silicone rubber (LSR) ou compostos de silicone sólido em produtos moldados com precisão por meio de cura controlada. Ele aproveita a elasticidade única do silicone, resistência ao calor, e biocompatibilidade para atender indústrias desde proteção de relíquias culturais até dispositivos médicos. Mas o que torna esta tecnologia versátil, how do you select the right methods for specific needs, and how to avoid common production pitfalls?

1. Core Types of Silicone Molding Technology: A Comparative Analysis

Silicone molding technology varies by material state and curing mechanism. The table below breaks down key types, seus pontos fortes, e usos ideais:

Tipo de tecnologiaKey CharacteristicsVantagensLimitaçõesIdeal Application Scenarios
Liquid Silicone Rubber (LSR) MoldagemUses two-component LSR (mixed 1:1 ou 10:1); cures at 120–180°CAlta precisão (±0,01 mm); no by-products; fast cycle time (30–60s/part)High equipment cost; requires specialized injection machinesDispositivos médicos (por exemplo, componentes protéticos), produtos para bebês (por exemplo, pacifier nipples)
Solid Silicone Compression MoldingUses pre-cut solid silicone sheets; pressed in molds (160–200ºC, 10–20MPa)Low equipment investment; suitable for large parts; fácil de escalarLonger curing time (5–10min/part); lower detail resolutionSelos industriais, juntas automotivas, large craft molds
Silicone Coating & DippingApplies thin silicone layers via brushing/dipping; cures at room temp or low heatEspessura uniforme (5–500μm); adheres to diverse substrates (metal, fabric)Limited to thin-walled products; slow for thick layersElectronic component waterproofing, cultural relic protective coatings
Vacuum-Assisted Silicone MoldingUses vacuum chambers to eliminate bubbles during pouring; for LSR or solid compoundsNo bubble defects; high surface finish (Ra≤1.6μm)Longer process time; requires vacuum equipmentPrecision jewelry molds, componentes ópticos, cultural relic replication

2. Material Selection for Silicone Molding: Match to Performance Needs

The success of silicone molding depends on choosing the right silicone type. Below is a guide to material categories and their key parameters:

UM. Silicone Material Categories

Categoria de materiaisPrincipais recursosCompliance StandardsTypical Use Cases
Condensation-Cure SiliconeReleases ethanol during curing; baixo custo; easy to operateNível industrial (no food/medical compliance)Ordinary crafts, non-critical seals
Addition-Cure SiliconeNo by-products; baixo encolhimento (<0.1%); high purityFDA/ISO 10993 (médico); FDA 21 CFR (comida)Medical prosthetics, food-contact molds (por exemplo, chocolate molds)
FluorosiliconeHeat resistance up to 300°C; resistência química (ácidos, óleos)MIL-STD-883 (aeroespacial); ASTM D2000 (automotivo)Selos aeroespaciais, high-temperature industrial gaskets

B. Critical Material Parameters to Consider

  1. Dureza (Costa A):
  • 5–10°: Ultra-soft (cultural relic cushions, medical skin contact parts)
  • 20–30°: Médio-macio (resin craft molds, baby product components)
  • 40–60°: Duro (selos industriais, juntas automotivas)
  1. Viscosity:
  • Baixo (<5,000 cP): Flows into micro-details (jewelry molds, electronic component coatings)
  • Alto (>10,000 cP): Ideal for brushing/dipping (thick protective layers for cultural relics)
  1. Tear Strength:

4kN/m: High-durability needs (reusable molds, frequent-use seals)

  • 2–3kN/m: Budget-friendly, low-cycle products (disposable craft molds)

3. Standardized Workflow of Silicone Molding Technology

A typical silicone molding process follows 5 etapas principais, with strict controls at each step to ensure quality:

Stage 1: Pre-Production Preparation

  1. Protótipo & Projeto de molde:
  • For uneven substrates (madeira, pedra), spray PVA water-soluble release agent to prevent silicone adhesion.
  • Add chamfers (0.5–1 mm) to mold edges to avoid stress concentration and tearing.
  • For deep-hole structures, embed magnetic nuts for post-molding positioning.
  1. Configuração de ferramentas:
  • Build a containment frame (glass/acrylic) 10cm taller than the prototype’s highest point to prevent overflow.
  • Reserve a glue injection port (diameter ≥1cm) and serpentine exhaust grooves to release air.

Stage 2: Preparação de Materiais & Mixing

  1. Component Mixing:
  • For LSR: Use an electronic scale to weigh AB components (por exemplo, 1:1 ratio) with ±0.1g accuracy.
  • For solid silicone: Cut compounds into blanks matching the mold’s cavity volume (add 5–10% for compression shrinkage).
  1. Defoaming:
  • Place mixed LSR in a vacuum chamber (-0.1MPa) for 15–20 minutes; repeat 2–3 times at 5-minute intervals for bubble-free results.

Stage 3: Moldagem & Cura

Tipo de tecnologiaMolding ProcessCuring Parameters
LSR MoldingInject mixed LSR into heated molds (120–150ºC) via specialized injection machinesCure time: 30–60s; pressão: 5–10MPa
Moldagem por compressãoPlace solid silicone blanks in molds; apply pressure (10–20MPa) e calor (160–180ºC)Cure time: 5–10min; post-cure at 200°C for 2h to eliminate stress
Coating/DippingBrush/dip substrate in silicone; let stand for 10–15min to levelRoom-temperature cure: 24h; low-heat cure: 60°C for 2h

Stage 4: Desmoldagem & Pós-processamento

  1. Desmoldagem:
  • Use thin plastic sheets to separate silicone from molds; tap the back gently to vibrate stuck parts.
  • For complex molds, pre-cut guide grooves (depth ≤1/3 of mold thickness) to ease peeling.
  1. Aparar & Acabamento:
  • Cut excess flash with sharp scissors; sand inner surfaces with 400–600 grit sandpaper for Ra≤1.6μm smoothness.

Stage 5: Inspeção de Qualidade

  • Estabilidade Dimensional: Measure key dimensions 3 times with a caliper; ensure tolerance within ±0.5%.
  • Qualidade de Superfície: Use a roughness meter to verify Ra≤1.6μm; check for pockmarks or bubbles.
  • Performance Testing: For high-cycle products, run dynamic fatigue tests (≥100,000 folds without tearing).

4. Troubleshooting Common Issues in Silicone Molding

Even with precise controls, issues may arise. Below is a cause-and-solution guide for frequent problems:

Problem PhenomenonRoot CausePractical Solution
Surface Pockmarks/ImperfectionsSubstrate contamination (oil/dust); environmental dust adhesionClean prototypes with alcohol; operate in a dust-free workshop.- Apply a thin release agent layer to smooth uneven surfaces.
Uneven ThicknessTurbulence from fast pouring; mold cavity design flawsUse a funnel for slow, layered pouring (1–2cm/min).- Optimize mold vents to balance pressure distribution.
Bubble TrappingInadequate vacuum defoaming; mixing too vigorouslyExtend vacuum time to 20–25min; add a second defoaming cycle.- Stir silicone at 30–50 RPM (avoids air entrapment).
Edge CurlUneven curing shrinkage; high exotherm during moldingSwitch to low-temperature curing (reduce by 10–15°C).- Add a 2-hour post-cure at 60°C to relieve internal stress.
Short Service LifeResin/chemical residue corrosion; UV agingClean molds with steam + neutral detergent after each use.- Store molds in opaque containers (avoids UV exposure); apply talcum powder for long-term storage.

5. Industry-Specific Applications of Silicone Molding Technology

Silicone molding technology solves unique challenges across sectors. Here are key use cases with implementation details:

IndústriaApplication CaseMolding Technology UsedKey Innovations
Cultural Relic ProtectionFragile relic support & shape replicationVacuum-assisted LSR molding (5° Shore A ultra-soft silicone)Embedded optical fiber sensors to monitor relic stress in real time; glass fiber reinforced layer for durability
Dispositivos MédicosCustom orthotic insolesAddition-cure LSR molding (biocompatible grade)3D-scanned prototypes for personalized fit; post-cure at 120°C to meet ISO 10993 padrões de biocompatibilidade
Toy ManufacturingLimited-edition doll molds (multi-color parts)Modular compression molding (colored silicone)Separate head/body molds with magnetic positioning; colored silicone for easy part identification
EletrônicaCircuit board waterproofingSilicone coating (low-viscosity LSR)Uniform 20μm coating; cures at 80°C to avoid damaging electronic components

6. Yigu Technology’s Perspective on Silicone Molding Technology

Na tecnologia Yigu, we see silicone molding technology as a bridge between precision engineering and creative needs. For cultural relic protection projects, our vacuum-assisted LSR molding (5° Shore A silicone) has successfully replicated 200+ fragile artifacts, with 0.1mm detail accuracy and real-time stress monitoring. Para clientes médicos, our addition-cure LSR molding process meets FDA 21 CFR standards, delivering custom prosthetic components with <0.01mm dimensional tolerance.

We’re advancing two key innovations: 1) Developing eco-friendly LSR (reducing VOCs by 35%) for sustainable manufacturing; 2) Integrating AI into mold temperature control (optimizing curing time by 20% while maintaining quality). Our goal is to make silicone molding technology more accessible, eficiente, and tailored to industry-specific challenges.

Perguntas frequentes

  1. What’s the difference between LSR molding and solid silicone compression molding for medical products?

LSR molding is ideal for high-precision, small medical parts (por exemplo, pontas de cateter) due to its ±0.01mm tolerance and biocompatibility (no by-products). Solid silicone compression molding works for larger parts (por exemplo, orthotic braces) and has lower equipment costs but longer cycle times. Always choose addition-cure LSR for implantable/skin-contact medical products.

  1. How to extend the service life of silicone molds made via this technology?

Clean molds with steam + neutral detergent (avoid sharp tools) after each use; store in opaque, dry containers (prevents UV aging); apply a thin talcum powder layer for storage over 1 mês. For high-frequency use, add a 2-hour post-cure at 60°C every 50 cycles to refresh elasticity.

  1. Can silicone molding technology be used for high-temperature industrial parts (por exemplo, 250°C+)?

Yes—use fluorosilicone material (heat resistance up to 300°C) with compression molding (180–200°C cure). Ensure a 4-hour post-cure at 220°C to enhance heat resistance. This setup is suitable for aerospace seals and high-temperature industrial gaskets, meeting MIL-STD-883 standards.

Índice
Role até o topo