In die casting production—whether for new energy vehicle motor housings or 5G base station cooling modules—post-processing of die casting is the final step that turns raw castings into high-performance, market-ready parts. It fixes casting defects, optimizes surface quality, and ensures parts meet design standards. This article breaks down its core goals, key processes, quality control methods, defect solutions, and cost-saving tips, helping you build a efficient post-processing workflow.
1. What Are the Core Goals and Principles of Die Casting Post-Processing?
Post-processing isn’t random—it follows clear goals and principles to avoid rework and ensure consistency.
1.1 Core Goals
The work focuses on four key objectives, tailored to part functions:
- Eliminate Casting Defects: Fix issues like shrinkage, pores, and flash left from casting.
- Optimize Surface Quality: Achieve smooth finishes or protective coatings for appearance and durability.
- Adjust Mechanical Properties: Boost strength, dureza, or creep resistance through heat treatment.
- Meet Design Accuracy: Ensure dimensions, planicidade, and other specs match engineering requirements.
1.2 Guiding Principles
To prevent secondary damage and save time, two rules are non-negotiable:
- “Rough First, Then Fine”: Do heavy-duty work (like cutting sprues) primeiro, then precision tasks (como moer). This avoids scratching finished surfaces.
- “Inside First, Then Outside”: Machine internal features (like holes) before external ones. Internal machining is more likely to cause minor deformation, which can be corrected when finishing the exterior.
2. What Are the Key Processes in Die Casting Post-Processing?
Post-processing has five core steps, each with specific techniques and parameters. Below is a detailed breakdown for industrial use:
2.1 Sprue, Riser, and Flash Removal
This step cleans up excess material from casting. The method depends on production volume and precision needs:
Lote de produção | Recommended Method | Principais vantagens | Parâmetros Críticos |
Produção em massa | Automatic Stamping & Cisalhamento | Alta eficiência (1000+ peças/hora); Flat cross-sections | Retain 1-2mm margin to protect the part body; Cut angle <5° |
Small-Medium Batches | Grinding Wheel/Diamond Saw Cutting | Flexível (works for odd-shaped parts); Low equipment cost | Use diamond blades for aluminum alloys to reduce burrs |
High-Precision Parts | Five-Axis Laser Cutting | No deformation risk; Corta formas complexas | Laser power: 500-1000C; Velocidade de corte: 100-300mm/min |
Observação: Usar Corte frio for aluminum-magnesium alloys to avoid heat-affected zones that weaken the part.
2.2 Surface Treatment Combinations
Surface treatment improves appearance, Resistência à corrosão, e funcionalidade. Choose based on material and part use:
Treatment Level | Técnicas | Principais especificações | Materiais adequados | Benefícios |
Basic Treatment | – Vibration Grinding (ceramic medium + alkaline solution)- Jato de areia (ASTM B243 ALMEN standard)- Chemical Degreasing (ultrasound-assisted) | – Deburrs edges- Ra=3.2-6.3μm (jato de areia)- Contact angle <5° (Desentando) | All die casting metals | Prepares surfaces for advanced treatments; Removes oil/dirt |
Advanced Treatment | – Anodizando- Micro-Arc Oxidation- Revestimento em pó- Eletroplatação | – Corrosion resistance ×3 (Anodizando)- Hardness HV≥800 (micro-arc oxidation)- Teste de pulverização de sal >1000h (revestimento em pó)- Gloss 90GU (Eletroplatação) | – Anodizando: Ligas de alumínio- Micro-arc oxidation: Al/Mg/Ti alloys- Revestimento em pó: Todos os metais- Eletroplatação: Copper/zinc alloys | Tailored to needs—e.g., anodizing for automotive parts; electroplating for decorative components |
2.3 Usinagem de precisão
This step refines dimensions and shapes. Success depends on clamping strategies and parameter optimization:
2.3.1 Clamping Strategies for Different Part Types
Tipo de peça | Método de fixação | Precisão | Caso de uso |
Thin-Walled Parts (<3milímetros) | Vacuum Suction Cup + Honeycomb Support Pad | Prevents deformation | Aluminum alloy laptop casings |
Irregular-Shaped Parts | 3D-Printed Custom Fixtures | Error <0.02milímetros | 5G base station cooling modules |
Multi-Process Parts | Zero-Point Positioning System | Repeat positioning <0.01milímetros | New energy vehicle motor housings |
2.3.2 Optimized Machining Parameters
Material | Tipo de processo | Alimentação por dente (milímetros) | Profundidade de corte (milímetros) | Velocidade de corte (m/meu) | Cooling Method |
Liga de alumínio | Desbaste | 0.15-0.25 | 0.8-1.2 | N / D | Low-temperature compressed air + micro-lubrication |
Aço inoxidável | Acabamento | N / D | Radial <0.5 | 80-120 | Igual ao acima |
2.4 Heat Treatment Strengthening
Heat treatment boosts mechanical properties. Use material-specific schemes:
Material | Heat Treatment Scheme | Parâmetros -chave | Resultados |
A380 Aluminum Alloy | T6 Solution Aging | 535±5°C for 8-12h; Quench transfer <30é | Tensile strength σb=320MPa; Elongation δ=8% |
ZAM4-1 Magnesium Alloy | T6 Artificial Aging | 415±5°C for 24h; Inert gas protection | Brinell hardness HB=90; Creep resistance ↓40% |
ZA27 Zinc Alloy | Endurecimento por idade | 90-120°C for 4-8h; Temperatura < eutectic point | Rockwell hardness HRB=95; Estabilidade dimensional |
Notas Críticas: Magnesium alloys need inert gas to avoid oxidation; Zinc alloys must not exceed eutectic temperature (causes melting).
2.5 Special Processing
For residual stress relief and sealing protection:
Propósito | Técnicas | Parâmetros | Benefícios |
Alívio do estresse residual | – Vibration Aging- Tratamento criogênico | – Frequency 2-50kHz; Amplitude 15-50μm- -196°C liquid nitrogen for 48h | Fatigue life ×2-3 (ligas de alumínio); Prevents long-term deformation |
Sealing Protection | – Silicone Rubber Impregnation (VIPI)- PARYLENE Vapor Deposition | – Pressure resistance IP68- Film thickness 5-25μm | Waterproof/dustproof; Protects electronics (Por exemplo, Altas do sensor) |
3. How to Control Quality in Die Casting Post-Processing?
Quality control ensures parts meet standards. Use the right tools and tests:
Quality Aspect | Testing Method | Standards/Requirements |
Precisão dimensional | Máquina de medição de coordenadas (Cmm) | GB/T. 6414 CT7 |
Air Tightness | HE High-Pressure Leak Detection | Leakage rate <1cm³/[email protected] |
Rugosidade da superfície | White Light Interferometer | Decorative surfaces: Ra≤0.8μm |
Adesão de revestimento | Grid Test + Tape Peeling | ASTM D3359 Method B |
Defeitos Internos | X-Ray Fluorescence + CT Scanning | ISO 17636-1 Level B |
4. How to Fix Common Post-Processing Defects?
Defects like shrinkage or pores can be resolved with targeted solutions:
Defeito | Causa | Solução |
Encolhimento (X-ray cloud-like shadows) | Insufficient cooling during casting | Add cooling inserts; Extend holding time to 8-12s |
Peeling (Separação de camada) | Large mold temperature gradient | Use mold temperature controller to keep inlet/outlet temp difference <5° c |
Pores (tiny air bubbles) | Trapped air during casting | Add more exhaust grooves; Adjust backpressure valve |
Deformação | Residual stress release | Manual aging treatment; Use calibration fixtures |
Baixa dureza (CDH<48) | Inadequate heat treatment | Laser cladding with TSN coating (hardness HRC62) |
5. How to Control Costs and Cycles in Post-Processing?
Post-processing accounts for a large portion of total costs—optimize to save money and time:
Etapa de pós-processamento | Cost Share | Cycle Share | Dicas de otimização | Resultados |
Basic Treatment | 15-25% | 20-30% | Use automatic rolling grinding lines | Manpower saved by 70% |
Tratamento de superfície | 20-35% | 15-25% | Build coating recycling systems | Consumables reduced by 40% |
Usinagem de precisão | 30-40% | 30-40% | Adopt turn-mill composite machining centers | Cycle time shortened by 50% |
Inspeção de qualidade | 5-10% | 5-10% | Replace manual checks with AI visual inspection | Missed detection rate <0.1% |
6. Yigu Technology’s Perspective on Post-Processing of Die Casting
Na tecnologia Yigu, nós vemos post-processing of die casting as the “value-adding bridge” between raw castings and high-quality parts. Nossos dados mostram 70% of part failures stem from rushed or mismatched post-processing—e.g., using heat treatment on porous aluminum parts causes cracking.
We recommend a “process-material matching” approach: For ADC12 aluminum alloy motor housings, we pair T6 heat treatment with precision boring to hit flatness <0.05mm/100mm; For Zamak5 zinc alloy medical handles, we use nano-chrome plating + gravação a laser para atender à ISO 10993 Padrões de biocompatibilidade. Ao integrar a automação (como inspeção de IA) e esquemas específicos de materiais, ajudamos os clientes a reduzir custos 25% enquanto melhora a confiabilidade das peças.
7. Perguntas frequentes: Common Questions About Post-Processing of Die Casting
1º trimestre: Can all die casting materials use the same surface treatment?
Não. Por exemplo, anodização só funciona em ligas de alumínio (forma uma camada de óxido), enquanto a oxidação por microarco é melhor para ligas de Al/Mg/Ti. As ligas de zinco são frequentemente galvanizadas para decoração, mas o revestimento em pó funciona para a maioria dos metais – sempre combine o tratamento com o material e a função da peça.
2º trimestre: Why is quench transfer time critical for aluminum alloy heat treatment?
Ligas de alumínio (como A380) precisam de têmpera rápida após o tratamento com solução para reter os elementos de fortalecimento. If transfer time exceeds 30 segundos, elements precipitate early, reducing tensile strength by up to 20%. We use automated quenching systems to keep transfer time <25 segundos.
3º trimestre: How to reduce deformation in thin-walled die casting post-processing?
Use three methods: 1) Clamp with vacuum suction cups + honeycomb pads to spread pressure; 2) Use low cutting speeds (50-80m/min para alumínio) to minimize force; 3) Add a cryogenic treatment step (-196°C for 24h) to release residual stress before precision machining. These cut deformation by 60%.