What Are the Key Differences Between Zinc Die Casting and Aluminum Die Casting?

usinagem CNC de liga de zinco

Zinc die casting and aluminum die casting are two of the most widely used metal-forming processes, each dominating distinct niches in manufacturing. While both rely on high pressure to inject molten metal into molds, their differences in material properties, Requisitos de processo, and end-product performance make them suited for entirely different applications—from tiny precision electronics parts to large automotive structural components. Mas o que exatamente os diferencia? How do these differences impact cost, eficiência, e qualidade de peça? And how do you choose the right process for your project? This article answers these questions with detailed comparisons and actionable insights.

1. Material Basis: Core Properties That Define Performance

The fundamental difference between the two processes lies in their base materials—zinc alloys and aluminum alloys—whose unique traits shape every aspect of die casting. The table below breaks down their key properties:

Propriedade do materialLigas de zinco (Por exemplo, Cargas 3, Cargas 5)Ligas de alumínio (Por exemplo, ADC12, ADC10)
ComposiçãoZinc-based, with added aluminum (3.5–4.3%), cobre (0.75–1,25%), and magnesium (0.03–0,08%)Aluminum-based, with silicon (9.5–12%), cobre (1.5–3,5%), e ferro (≤1.3%)
Ponto de fusãoBaixo (380–420 ° C.)Alto (680–720°C)
DensidadeAlto (6.6–6.8 g/cm³)Baixo (2.7 g/cm³)—1/2.5 that of zinc
Resistência à tracçãoModerado (280–320 MPA)Mais alto (300–350 MPa for heat-treated grades)
DuctilidadeExcelente (alongamento: 10–15%)—resists impact without crackingBom (alongamento: 2–5% for non-heat-treated; até 10% for heat-treated)
Condutividade térmicaBaixo (105–115 W/m·K)Alto (120–150 W/m·K)—better for heat-dissipating parts
Surface Treatment AdaptabilityOutstanding—ideal for electroplating, cromo, and high-gloss paintingModerate—challenged by porosity; best for anodizing, revestimento em pó, or baking paint

2. Parâmetros de processo: Equipamento, Eficiência, and Control

Material properties directly influence process requirements—from the type of die casting machine to production speed and defect risks.

UM. Seleção de equipamentos & Configurar

Process AspectCASTA DO FILHO DE ZINCFundição de matriz de alumínio
Tipo de máquinaUsos hot chamber die casting machines—the injection chamber is permanently immersed in molten zinc. This eliminates the need for separate metal feeding steps.Usos cold chamber die casting machines—molten aluminum is poured into a separate injection chamber (to avoid melting the machine components).
Clamping ForceMais baixo (50–200 tons)—sufficient for small, thin-walled parts.Mais alto (200–1,200 tons)—needed to handle high-pressure filling of large, partes complexas.
Material do moldeCan use lower-cost H13 steel—low melting point reduces mold wear.Requires heat-resistant mold materials (Por exemplo, H13 steel with nitriding treatment)—high temperatures demand better durability.
Mold Preheating RequirementAlto (150–200 ° C.)—prevents cold isolation defects (molten zinc solidifying too quickly on cold mold surfaces).Moderado (200–250 ° C.)—balances heat retention and rapid solidification for large parts.

B. Eficiência de produção & Custo

Efficiency MetricCASTA DO FILHO DE ZINCFundição de matriz de alumínio
Tempo de cicloRápido (15–30 seconds per part)—low melting point speeds up solidification.Mais devagar (30–60 segundos por parte)—higher melting point requires longer cooling.
Utilização do materialAlto (90–95%)—minimal scrap from runners and gates (easily recyclable).Moderado (80–85%)—more scrap from porosity defects and larger runners.
Custo por parte (Peças pequenas)Mais baixo (\(0.1- )0.5 por parte)—fast cycles and low energy use reduce costs.Mais alto (\(0.3- )1.0 por parte)—slower cycles and higher energy consumption increase costs.
Energy ConsumptionBaixo (30–50 kWh per 100 peças)—no need to reheat metal for each cycle.Alto (80–120 kWh per 100 peças)—requires continuous heating of aluminum to high temperatures.

3. Product Performance: Qualidade, Durabilidade, and Application Fit

The choice between zinc and aluminum die casting often comes down to the part’s required performance—whether it needs to be lightweight, resistente ao impacto, or visually appealing.

UM. Características de peça & Limitações

Part TraitCASTA DO FILHO DE ZINCFundição de matriz de alumínio
Size RangeIdeal for small parts (0.1–500g)—e.g., electronic connector housings, toy wheels.Suited for large parts (500g–10kg)—e.g., Blocos de motor automotivo, Quadros de bateria EV.
Espessura da paredeExcels at ultra-thin walls (0.5–2 mm)—low melting point ensures uniform filling.Handles thicker walls (2–10mm)—better for structural parts but struggles with <1mm espessura.
PrecisãoAlto (tolerância: ± 0,05 mm)—excellent for parts requiring tight fits (Por exemplo, Assista aos componentes).Bom (tolerância: ± 0,1 mm)—sufficient for most structural parts but less precise than zinc.
Defect RisksLow—minimal porosity (thanks to low melting point and slow filling). Risks include cold shuts if mold is underheated.Higher—prone to porosity (from turbulent filling) and shrinkage (from high cooling rates). Requires vacuum casting to reduce defects.
Resistência ao impactoSuperior—can withstand drops and vibrations (Por exemplo, phone case hinges, door lock mechanisms).Moderate—may crack under heavy impact; better for static load-bearing parts (Por exemplo, Suportes).

B. Cenários de aplicação típicos

The table below maps each process to its ideal industry and part types, based on performance needs:

IndústriaAplicações de fundição de zincoAluminum Die Casting Applications
EletrônicaUSB connector shells- Phone button housings- Laptop hinge components- Sensor casings– Afotos de calor (alta condutividade térmica)- 5G router frames (leve)- Power adapter enclosures
AutomotivoSmall functional parts (door lock mechanisms, wiper linkages)- Enteamento interno (high-gloss plated parts)- Pinos do conectorEngine blocks and cylinder heads- Capas de transmissão- Body structural parts (lightweight for EVs)- Battery pack frames
Bens de consumoHigh-end hardware (alças da torneira, botões do gabinete)- Toy joints and moving parts- Embalagem cosmética (plated finishes)– Aparelhos de cozinha (Bases do liquidificador, oven door frames)- Móveis ao ar livre (resistente ao tempo)- Luggage frames (leve e forte)
Aeroespacial & MédicoTiny precision parts (medical device connectors, aircraft instrument knobs)– Peças estruturais leves (Suportes aeroespaciais)- Medical equipment frames (resistente à corrosão)

4. Selection Strategy: Como escolher o processo certo

To avoid costly mistakes, follow this 4-step framework to select between zinc and aluminum die casting:

Etapa 1: Define Part Requirements

  • Tamanho & Peso: <500g → Zinc; >500g → Aluminum.
  • Weight Priority: Need lightweight (Por exemplo, EV parts) → Aluminum; weight not critical → Zinc.
  • Resistência ao impacto: Alto (Por exemplo, handheld devices) → Zinc; baixo (Por exemplo, static brackets) → Aluminum.

Etapa 2: Evaluate Surface & Precision Needs

  • High-Gloss/Plated Finish: Obrigatório (Por exemplo, hardware decorativo) → Zinc; not required → Aluminum.
  • Tolerância: ±0.05mm or tighter (Por exemplo, eletrônica) → Zinc; ±0.1mm acceptable → Aluminum.

Etapa 3: Considere o volume de produção

  • Low-Medium Volume (<100,000 peças): Zinco (lower mold costs and faster setup).
  • Alto volume (>100,000 parts): Alumínio (cost per part decreases with scale, offsetting higher initial investment).

Etapa 4: Calculate Total Cost of Ownership

  • Zinco: Lower upfront costs (máquina + mofo) but higher material costs (denser, uses more metal per part).
  • Alumínio: Higher upfront costs but lower material costs (isqueiro, uses less metal) and better long-term efficiency for large batches.

5. Yigu Technology’s Perspective on Zinc vs. Fundição de matriz de alumínio

Na tecnologia Yigu, we see zinc and aluminum die casting as complementary tools—each solving unique customer needs. For electronics clients needing tiny, peças precisas (Por exemplo, Conectores USB), our hot chamber zinc die casting lines deliver 99.5% yield rates and cycle times of 18 segundos/parte. For automotive clients requiring large structural components (Por exemplo, battery frames), our cold chamber aluminum lines (equipped with vacuum degassing) reduce porosity to <0.5% and meet IATF 16949 padrões.

We’re advancing two key innovations: 1) Hybrid mold designs for zinc casting (reducing tooling costs by 30% Para pequenos lotes); 2) AI-driven parameter control for aluminum casting (optimizing filling speed to cut defects by 25%). Our goal is to help clients look beyond “cost alone” and choose the process that aligns with their part’s function, vida útil, and market positioning—delivering value that extends beyond production.

Perguntas frequentes

  1. Can I use zinc die casting for heat-dissipating parts (Por exemplo, Afotos de calor de LED)?

No—zinc’s low thermal conductivity (105 W/m · k) makes it poor at transferring heat. Alumínio (120–150 W/m·K) is far better for heat-dissipating parts. Por exemplo, an aluminum LED heat sink keeps temperatures 20–30°C lower than a zinc equivalent.

  1. Is aluminum die casting more expensive than zinc die casting for small parts?

Yes—for parts <500g, aluminum’s slower cycle time (30–60s vs. 15–30s for zinc) and higher energy use increase per-part costs by 30–50%. No entanto, if the part needs to be lightweight (Por exemplo, EV electronics), aluminum’s weight savings may offset the higher cost long-term.

  1. Can zinc die casting parts be heat-treated to improve strength?

No—zinc alloys do not respond well to heat treatment; it can cause brittleness or deformation. Ligas de alumínio (Por exemplo, ADC12) can be heat-treated (Por exemplo, T6 process) to increase tensile strength by 15–20%, making them better for load-bearing parts.

Índice
Role até o topo