What Is CNC Machining Process for a Mixer Prototype Model? Um guia passo a passo

usinagem médica do CNC

Developing a mixer prototype model requires a precise CNC machining process to validate design rationality, test component fit (Por exemplo, blade assembly, transmission structures), and evaluate user-centric details (Por exemplo, non-slip base, button responsiveness). Unlike simple appliances, mixers have compact, high-functionality structures—from curved stirring 刀组 (knife sets) to transparent mixing cups—that demand tailored machining strategies. This guide breaks down the full workflow, from preliminary design to final assembly, with key parameters, material selections, and practical tips to ensure prototype success.

1. Preparação Preliminar: Estabeleça a base para a usinagem

The success of CNC machining starts with thorough preparation, including 3D modeling, Seleção de material, and equipment/tool readiness. This stage avoids rework and ensures alignment with design goals.

(1) 3D Modelagem: Define Mixer Structure with Precision

Use o software CAD profissional (Por exemplo, SolidWorks, e, Gosto) to create a detailed 3D model covering all critical components. The model must balance aesthetic design, functional logic, and machining feasibility.

Component CategoryKey Design DetailsRequisitos de precisãoPropósito
Main Body (Concha)Streamlined contour, non-slip base (groove depth 2mm), button mounting holes (Φ8mm)Shell dimensional error ±0.2mm; hole position tolerance ±0.1mmEnsure structural stability; fit control buttons and motor components
Mixing Cup (Transparente)Inner cavity volume (Por exemplo, 600mL), feeding port (Φ60mm), discharge outlet (Φ20mm)Cavity roundness error ≤0.1mm; wall thickness uniformity ±0.05mmEnsure smooth material mixing; avoid leakage at connections
Knife Set & Tool HolderBlade curve (radius 5mm), mounting slot (depth 6mm), gear cavity (for POM gears)Slot depth tolerance ±0.05mm; gear cavity clearance 0.1mmFit rotating components; ensure smooth blade operation

Model Optimization Tips:

  • Component Splitting: Split integrated structures (Por exemplo, cup body + tampa) into independent parts to avoid tool interference. Por exemplo, machine the mixing cup and its lid separately, then assemble with a sealing ring.
  • Process Marking: Label critical features (Por exemplo, “polish inner wall of mixing cup”) and reference datums (Por exemplo, base bottom as origin) to guide CNC programming.
  • Interference Check: Use software to simulate blade rotation—ensure 0.5mm clearance between blade and cup wall to prevent friction and material jamming.

(2) Seleção de material: Match Performance to Component Roles

Mixer components have distinct functional needs (transparência, resistência ao desgaste, força), so material selection is critical. Below is a detailed comparison of suitable options:

Tipo de materialApplicable ComponentsPropriedades -chaveMachinability Advantages
Plástico ABSMain shell, base, tampaResistência ao alto impacto (Izod strength 20 KJ /), fácil de colorir, baixo custoLow tool wear; machinable at 8,000–12,000 rpm (fast and efficient)
PC PlásticoTransparent mixing cup, observation windowAlta transparência (light transmittance ≥88%), resistente ao impacto (10x mais forte que o vidro)Precision cutting achievable; minimal edge chipping (≤0.1mm)
Pom (Poloximetileno)Engrenagens, tool holder (Peças resistentes ao desgaste)Baixo coeficiente de atrito (0.15), alta resistência ao desgaste, boa estabilidade dimensionalNo deformation during machining; suitable for small transmission parts
Liga de alumínio (6061)Motor brackets, metal decorative partsAlta rigidez (resistência à tracção 276 MPA), resistente à corrosãoFast cutting speed; surface can be anodized for enhanced texture
Aço inoxidável (304)Simulation knife shafts (opcional)Alta resistência, resistente à corrosão, resistente ao desgasteSuitable for high-precision cutting; maintains shape under stress

Material Blank Preparation:

  • Cut blanks with 5–10mm machining allowance on all sides to accommodate roughing and finishing:
  • A PC mixing cup (Tamanho final: Φ90mm×150mm) needs a Φ100mm×160mm blank.
  • An ABS main shell (220mm×160mm×90mm) requires a 230mm×170mm×100mm blank.

(3) Equipamento & Preparação de ferramentas: Ensure Machining Accuracy

Select CNC equipment and tools based on component complexity and material properties to avoid defects like tool marks or dimensional deviations.

Equipment/Tool TypeSelection CriteriaRecommended Specifications
CNC Machining Center3-axis for flat parts; 5-axis for curved surfaces (Por exemplo, blade curves)Positioning accuracy ±0.005mm; spindle speed range 8,000–24,000 rpm
Cortadores de moagemSolid carbide for plastics; Aço de alta velocidade (HSS) para metal– Desbaste: Φ8–Φ12mm flat-bottom mills (fast material removal)- Acabamento: Φ2–Φ6mm ball-head mills (superfícies curvas); Φ0.5–2mm small mills (logo/buttons)
Special ToolsTaper cutters (chamfering cup edges); diamond polishers (PC transparency)Taper angle 45°; diamond polisher grit 1,200# (for PC surface refinement)
AcessóriosVacuum suction cups (flat ABS/PC parts); precision vises (componentes de metal)Vacuum pressure ≥0.8 MPa; vise clamping force ≥3 kN (prevents workpiece displacement)

2. Execução de usinagem CNC: From Blank to Prototype Components

This stage divides machining into roughing and finishing to balance efficiency and precision—critical for mixer components with diverse structures.

(1) Usinagem áspera: Shape the Foundation

Roughing removes most excess material to bring the blank close to the final shape, prioritizing speed while avoiding tool damage.

Tipo de componenteRoughing FocusOperações-chave & Parâmetros
ABS Main ShellMachine outer contour, base grooves, button holesUse Φ10mm flat-bottom mill; velocidade de corte 10,000 RPM, taxa de alimentação 1,200 mm/min; layer depth 3mm
PC Mixing CupMill outer wall and inner cavity; pre-drill feeding/discharge outletsUse Φ8mm end mill; velocidade de corte 9,000 RPM, taxa de alimentação 800 mm/min; retain 0.5mm finishing allowance
POM Gear CavityMachine cavity outline and mounting holesUse Φ6mm end mill; velocidade de corte 8,000 RPM, taxa de alimentação 600 mm/min; Evite superaquecer (POM melts at 160°C)

Post-Roughing Inspection:

  • Use a digital caliper to check key dimensions (Por exemplo, mixing cup diameter, shell height) and ensure they are within ±0.5mm of the design value.
  • Clean chips with compressed air—especially critical for PC parts (chips left on surfaces cause scratches during finishing).

(2) Acabamento: Achieve Precision & Qualidade da superfície

Finishing refines components to meet final design requirements, focusing on transparency (computador), smoothness (Abs), e precisão dimensional (POM/metal).

Tipo de componenteFinishing FocusOperações-chave & Parâmetros
PC Mixing CupPolish inner/outer walls (transparência); chamfer edges (prevent sharpness)Use Φ4mm ball-head mill (inner wall); velocidade de corte 15,000 RPM, taxa de alimentação 500 mm/min; then diamond polish (light transmittance ≥85%)
ABS Main ShellSmooth shell surface; engrave logo/button labels (depth 0.3mm)Use Φ2mm ball-head mill; velocidade de corte 12,000 RPM, taxa de alimentação 700 mm/min; surface roughness Ra ≤0.8μm
POM Gear CavityRefine cavity walls; ensure gear clearance (0.1milímetros)Use Φ3mm end mill; velocidade de corte 9,000 RPM, taxa de alimentação 500 mm/min; tolerância dimensional ± 0,05 mm
Aluminum Motor BracketSmooth mounting surfaces; drill precision holes (Φ5mm)Use Φ5mm twist drill; velocidade de corte 18,000 RPM, taxa de alimentação 1,000 mm/min; hole roundness error ≤0.02mm

Finishing Quality Checks:

  • For PC parts: Use a spectrophotometer to verify transparency (≥85%) and a surface roughness tester to confirm Ra ≤0.4μm.
  • For POM gear cavities: Use a feeler gauge to check clearance (0.1milímetros) and ensure gears rotate smoothly without jamming.

3. Pós-processamento: Aprimorar a estética & Funcionalidade

Post-processing bridges the gap between machined components and a realistic mixer prototype, focusing on surface refinement and assembly readiness.

(1) Tratamento de superfície: Adaptar ao material & Component Role

Material/ComponentEtapas de tratamento de superfícieResultado Esperado
ABS Main Shell1. Sand with 400#→800#→1200# sandpaper (remover marcas de ferramentas)2. Degrease with isopropyl alcohol3. Spray matte/gloss paint (50espessura de μm)Adesão da pintura ≥4B (Sem descascamento); surface gloss 30–70 GU (por design)
PC Mixing Cup1. Diamond polishing (1,200#→2,000# grit)2. Clean with lens cleaner3. Apply anti-scratch coatingSem arranhões visíveis; anti-scratch level ≥3H (pencil test)
Aluminum Brackets1. Desengordure com limpador alcalino2. Anodizar (silver-gray, 8–10μm film)3. Jateamento de areia (acabamento fosco)Resistência à corrosão: Sem ferrugem após teste de névoa salina de 48 horas; coeficiente de atrito ≤0,15
POM Gear PartsNenhum tratamento adicional (superfície naturalmente lisa)Friction coefficient remains 0.15; no wear after 1,000 rotation tests

(2) Conjunto & Functional Debugging

Proper assembly ensures components work together seamlessly, while functional tests validate the prototype’s usability.

Etapas de montagem:

  1. Verificação pré-montagem: Verify all parts meet dimensional requirements (Por exemplo, mixing cup fits shell with 0.5mm clearance).
  2. Component Fixing:
  • Bond PC mixing cup to ABS shell with food-grade adhesive (ensure no leakage).
  • Screw aluminum motor brackets to the base (torque 5 N · m, evite danos à linha).
  • Install POM gears and 3D-printed resin simulation blades (replace real metal blades for safety).
  1. Sealing Test: Pour 300mL water into the mixing cup—check for leakage at connections (no water seepage within 10 minutos).

Functional Debugging:

  • Button Operation: Test switch/pulse buttons 100 times—stroke 2mm ±0.2mm, feedback force 5–8N (comfortable for users).
  • Blade Rotation: Simulate mixing with a motor (600 RPM)—ensure blade rotates smoothly, no friction with cup wall.
  • Fluxo de material: Pour simulated ingredients (Por exemplo, água + flour mixture) through the feeding port—check flow rate (≥80mL/min) and no residue in the cup.

4. Controle de qualidade & Otimização do processo

Strict quality control ensures the prototype meets design standards, while optimization reduces costs for future iterations.

(1) Key Quality Control Standards

Control ItemAcceptance CriteriaInspection Method
Precisão dimensionalMixing cup: ± 0,1 mm- Concha: ± 0,2 mm- Gear cavity: ± 0,05 mmCmm (critical components); PALIPER DIGITAL (partes gerais)
Qualidade da superfície– computador: Ra ≤0.4μm, transparency ≥85%- Abs: RA ≤0,8μm, Sem marcas de ferramentasSurface roughness tester; spectrophotometer; Inspeção visual (500lux light)
Functional PerformanceNo leakage (10-minute water test)- Blade rotation: 600 rpm ±50 rpmWater leakage test; tachometer (blade speed)

(2) Process Optimization Tips

  1. Material Saving: Design hollow structures for ABS parts (Por exemplo, base with 3mm thick walls) to reduce blank size—saves 20–30% material cost.
  2. Eficiência de usinagem: Combine roughing and semi-finishing for simple parts (Por exemplo, decorative strips) to cut tool change time by 15%.
  3. Post-Processing Simplification: Para peças ocultas (Por exemplo, motor brackets), skip anodizing—use natural aluminum finish to save 10–15% of treatment cost.

Yigu Technology’s Perspective on CNC Machining Mixer Prototype Models

Na tecnologia Yigu, acreditamos functional precision and cost balance are the core of mixer prototype machining. Many clients overcomplicate processes—for example, using 5-axis machines for flat ABS shells when 3-axis works, or over-polishing hidden POM parts. Our team optimizes for both quality and efficiency: We use PC with diamond polishing for mixing cups (ensuring transparency ≥85%) and 3-axis machines for most components to cut 20% of machining time. We also simplify blade simulation (3D-printed resin instead of metal) for safety and cost. For batch prototypes, we use multi-cavity fixtures to machine 2–3 mixing cups at once, reduzindo o tempo de produção por 30%. Our goal is to deliver prototypes that validate design and user needs at the lowest cost.

Perguntas frequentes

  1. Why is POM preferred for mixer gear components instead of ABS?

POM has a lower friction coefficient (0.15 vs.. 0.3 para ABS) and higher wear resistance, making it ideal for transmission gears that require smooth rotation and long-term use. ABS is prone to wear and deformation under repeated friction, which would cause gear jamming in mixers.

  1. How to prevent PC mixing cups from scratching during CNC machining?

We take three key steps: 1) Use Sharp, high-quality solid carbide tools to minimize cutting force; 2) Apply a protective film to the cup surface before machining; 3) Clean chips with compressed air (not cloth) to avoid abrasive scratches. These measures keep the PC surface scratch-free.

  1. What is the total time required to machine a single mixer prototype?

Total time is ~4–7 days: 1 day for 3D modeling/material prep, 1–2 days for CNC machining (desbaste + acabamento), 1–2 days for post-processing (polishing/painting), and 1–2 days for assembly/debugging. Batch production (10+ protótipos) can be shortened to 3–5 days with parallel processing.

Índice
Role até o topo