What Is the Professional CNC Machining Electric Fan Prototype Process?

polyester pbt injection molding

O CNC machining electric fan prototype process is a systematic workflow that transforms design concepts into physical prototypes, validating appearance authenticity, Estabilidade estrutural, airflow efficiency, e lógica funcional central (Por exemplo, head-shaking smoothness, noise control). Este artigo detalha o processo passo a passo – desde o design preliminar até a depuração final – usando tabelas baseadas em dados, diretrizes práticas, e dicas de solução de problemas para ajudá-lo a enfrentar os principais desafios e garantir o sucesso do protótipo.

1. Preparação Preliminar: Define Requirements & Coloque a fundação

Preliminary preparation sets the direction for the entire prototype development. Ele se concentra em duas tarefas principais: requirements analysis & conceptual design e 3D Modelagem & structural detailing, both tailored to the unique needs of electric fans (Por exemplo, silent operation for bedrooms, stability for floor fans).

1.1 Requirements Analysis & Conceptual Design

Before starting machining, esclarecer os requisitos funcionais e de aparência para evitar objetivos de desenvolvimento desalinhados.

  • Esclarecimento de Requisitos Funcionais:
Tipo de ventiladorFoco Funcional CentralExemplo de especificações principais
Ventilador de chãoAlcance de balançar a cabeça, estabilidade, alto fluxo de arÂngulo de balançar a cabeça: 60°–90°; Peso base ≥2kg
Ventilador de mesaOperação silenciosa, tamanho compacto, baixa potênciaRuído ≤40dB; Tamanho ≤300×300×400mm; Potência ≤30W
Ventilador de tetoCapacidade de carga de carga, fluxo de ar uniformeCapacidade de carga ≥5kg; Cobertura de fluxo de ar ≥15m²
  • Design de conceito de aparência:
  • Crie esboços preliminares ou rascunhos 3D usando ferramentas como Sketchup ou Rinoceronte, considerando:
  • Coordenação Estética: Bordas arredondadas (radius 3–5mm) for household fans to fit home decor; geometric shapes for industrial fans.
  • Human-Computer Interaction: Button/knob layout (Por exemplo, 3 wind-speed buttons on the fan head for easy reach); indicator light positions (visible but not glaring).
  • Environmental Adaptation: Dust-proof grilles for industrial fans; anti-slip base pads for table fans.

Why is this important? Skipping requirement clarification can lead to rework—for example, a bedroom fan prototype without silent design may need 25% more time to optimize fan blade curvature and motor mounting.

1.2 3D Modelagem & Structural Detailing

Use professional CAD software to translate concepts into precise models, ensuring processability for CNC machining.

  • Seleção de software: Priorize SolidWorks, E nx, ou Para/e—eles suportam design paramétrico, allowing easy adjustment of dimensions (Por exemplo, fan blade length, base diameter) and compatibility with CAM software.
  • Core Structural Design:
  1. Component Breakdown: Split the fan into parts like Habitação, fan blades, motor bracket, base, e painel de controle for separate machining.
  2. Key Structure Optimization:
  • Housing: Determine material thickness (1–3mm for plastic, 2–4mm for metal) and assembly structures (Snaps, M2–M3 screw holes with ±0.1mm tolerance).
  • Fan Blades: Design curved surfaces and angles (15°–25° attack angle) to balance airflow and noise; ensure blade weight difference ≤0.5g for anti-jitter.
  • Base: Add weighted blocks or counterweight structures (Por exemplo, 1kg metal plate in plastic bases) to improve stability; integrate rubber anti-slip pads (thickness 2–3mm).
  • Head-Shaking Mechanism: For floor/table fans, design gear or connecting rod structures (gear module: 0.5–1mm) to ensure smooth left-right swinging.
  1. Detail Features: Add brand logos (embossed height 0.8–1mm), heat dissipation holes (diameter 2–3mm, grid pattern), and button icons (silk-screen ready).

2. Seleção de material & Process Planning: Match Materials to Functions

Choosing the right materials and defining machining strategies are critical for prototype performance. This phase follows amaterial selection → parameter setting → sequence planning” fluxo de trabalho.

2.1 Seleção de material: Balance Performance & Custo

Different components require materials with specific properties (Por exemplo, lightweight for fan blades, durability for bases). The table below compares suitable options:

ComponenteMaterial recomendadoPropriedades -chaveProcessing AdvantagesIntervalo de custos (por kg)
HousingPlástico ABS / Liga de alumínioPlástico: Leve, baixo custo; Metal: DurávelPlástico: Easy cutting; Metal: Good for anodization\(3- )6 (Abs); \(6- )10 (Alumínio)
Fan BladesPlástico ABS / Liga de alumínioPlástico: Low noise; Metal: Alta resistênciaPlástico: No burrs; Metal: Suitable for curved machining\(3- )6 (Abs); \(6- )10 (Alumínio)
BasePlástico ABS / Ferro fundidoPlástico: Luz; Ferro fundido: High stabilityPlástico: Fast machining; Ferro fundido: Good for weighting\(3- )6 (Abs); \(8- )12 (Ferro fundido)
Motor BracketLiga de alumínio (6061)Alta resistência, heat dissipationFácil de máquina; Anodization-friendly\(6- )10
Painel de controleAbs + PC BlendResistência ao impacto, isolamentoSmooth surface for silk-screen\(4- )7

Exemplo: Bedroom table fan blades use ABS plastic (low noise, leve), while industrial floor fan blades use aluminum alloy (high strength for heavy-duty use).

2.2 Process Planning: Define Machining Strategies

Clear process planning ensures efficient and precise CNC machining.

  • Tool Selection by Material & Tarefa:
MaterialMachining TaskTipo de ferramentaEspecificações
Plástico (Abs)DesbasteCarbide Flat-End MillΦ6–10mm, 2–3 teeth
Plástico (Abs)AcabamentoCarbide Ball-Nose MillΦ2–4mm, 4–6 dentes
Liga de alumínioDesbasteCarbide End MillΦ4–6mm, 2 dentes
Liga de alumínioAcabamentoCoated Carbide CutterΦ3–5mm, 4 dentes
  • Configuração de parâmetros de corte:
MaterialEstágio de usinagemVelocidade (RPM)Taxa de alimentação (mm/dente)Profundidade de corte (milímetros)CoICONTE
Plástico ABSDesbaste300–6000.2–0.50.5–2Compressed Air
Plástico ABSAcabamento800–15000.1–0.20.1–0.3Compressed Air
Liga de alumínioDesbaste1500–25000.1–0.31–3Emulsion
Liga de alumínioAcabamento2500–40000.05–0.10.05–0.1Emulsion
  • Machining Sequence:
  1. Process large parts first (base, Habitação) to avoid collision with small parts.
  2. Machine complex curved surfaces (fan blades) em camadas (0.5–1mm por camada) to ensure shape accuracy.
  3. Acabar pequenas peças de precisão (motor brackets, Botões do painel de controle) last to prevent damage.

3. Execução de usinagem CNC: Turn Models into Components

Esta fase é o núcleo da criação do protótipo, seguindo um “preparação da máquina → desbaste → semiacabamento → acabamento” fluxo de trabalho para garantir a precisão do componente.

3.1 Machine Preparation & Programação

Proper setup lays the groundwork for error-free machining.

  • Seleção de Máquina:
  • Most electric fan parts (Habitação, lâminas) can be processed with a 3-fresadora CNC de eixo (precisão de posicionamento ±0,01 mm).
  • For fan blades with spiral curved surfaces, use um 5-máquina CNC de eixo or an indexing head to achieve multi-angle machining.
  • Programação & Calibração:
  1. Importe modelos 3D para software CAM (Por exemplo, MasterCam, PowerMill) to generate toolpaths.
  2. Set machining coordinate systems and safety planes (5–10mm above the workpiece) to avoid tool collision.
  3. Clamp materials (plastic plates, aluminum blocks) and calibrate the zero point using a touch probe (accuracy ±0.005mm).

3.2 Desbaste & Semi-infinita: Shape the Basic Form

  • Desbaste:
  • Remove 80–90% of excess material to approach the component’s basic shape.
  • For plastic housing: Mill the outer contour first, then dig the internal cavity to avoid material collapse.
  • For metal base: Use a large-diameter cutter (Φ8–10mm) to quickly remove allowance; clean chips in real time to prevent scratches.
  • Semi-infinita:
  • Correct roughing deviations and leave a 0.1–0.2mm allowance for finishing.
  • Focus on key structures:
  • Fan blade curved surfaces: Ensure smooth transitions between layers.
  • Motor bracket holes: Pre-drill to 90% of the final diameter for precise tapping later.

3.3 Acabamento: Achieve Precision & Qualidade da superfície

Finishing determines the prototype’s appearance and functional performance.

  • Surface Quality Requirements:
ComponenteRugosidade da superfícieMétodo de processamento
Plastic HousingRA ≤0,8μmPolishing with 800–1200 mesh sandpaper
Metal BladesRa ≤0.4μmJato de areia + polimento; edge chamfering (R0.5mm)
Painel de controleRA ≤1,6μmCoating with anti-scratch film after machining
  • Special Structure Machining:
  • Head-Shaking Mechanism: Machine gear grooves or connecting rod holes with high precision (tolerância ±0,03 mm) to ensure smooth movement.
  • Fan Blade Mounting Holes: Drill and tap M3–M4 threads; ensure coaxiality with the motor shaft (erro ≤0,02 mm) to avoid jitter.

4. Pós-processamento & Conjunto: Aumente o desempenho & Estética

O pós-processamento remove falhas e prepara componentes para montagem, while careful assembly ensures the prototype functions as intended.

4.1 Pós-processamento: Improve Appearance & Durabilidade

  • Deburrendo & Limpeza:
  • Peças plásticas: Use a blade to remove burrs; clean with isopropyl alcohol to eliminate oil residue.
  • Peças de metal: Sand with 400–800 mesh sandpaper; para alumínio, use a wire brush to remove oxidation.
  • Tratamento de superfície:
ComponenteMétodo de tratamentoPropósito
Plastic HousingSpray matte/glossy paint; hot-stamp brand logosAprimorar a estética; prevent scratches
Aluminum BladesAnodization (black/silver); anti-rust coatingMelhorar a resistência à corrosão; add texture
Painel de controleSilk-screen buttons/icons; spray insulating paintEnsure visibility; prevent electrical leakage
  • Functional Enhancement:
  • Attach rubber anti-slip pads to the base (adhesive strength ≥5N/cm²).
  • Install waterproof membranes on the control panel to prevent dust/water ingress.

4.2 Conjunto & Depuração: Validate Functionality

Follow a sequential assembly order to avoid rework and ensure functional reliability.

  1. Verificação pré-montagem: Verify all parts meet specs (Por exemplo, fan blade weight balance, screw hole alignment).
  2. Core Component Assembly:
  • Mount the motor to the bracket (use M3 screws, torque: 1.0–1.5 N·m).
  • Install fan blades onto the motor shaft (ensure tight fit; no axial movement).
  • Assemble the base and housing (use snaps or screws; check stability—tilt angle ≤5° without tipping).
  1. Functional Debugging:

|

Test ItemFerramentas/MétodosCritérios de aprovação
Airflow EfficiencyAnemometer, measured at a distance of 1 meter from the fanFloor fan: Minimum of 5 m/s on high gearTable fan: Minimum of 3 m/s on high gear
Head-Shaking FunctionProtractor and stopwatchOscillation angle: 60°–90°, as per design specificationsSmooth operation without jitterCompletion of one oscillation cycle within 10 seconds or less
Noise LevelSound level meter, measured at 1 meter in a quiet environmentHousehold fans: Máximo 40 dB – Industrial fans: Máximo 55 dB
Safety PerformanceForce gauge (for grille protection testing), Insulation tester (for power cord testing)Grille gap: 5 mm ou menos (ensuring fingertips cannot reach the blades) – Insulation resistance: 100 MΩ or higher

5. Casos de aplicação: Tailor Processes to Fan Types

Different fan types require adjusted processes to meet their unique needs.

5.1 Household Table Fan Prototype

  • Foco: Silent operation and compact size.
  • Process Adjustments:
  • Use ABS plastic for blades (low noise) and optimize curvature to reduce wind turbulence.
  • Test 2–3 color schemes (branco, light gray) via spray painting to verify user preferences.
  • Prototype Value: Validate if the size (≤300×300×400mm) fits nightstands and if noise (≤35dB) avoids disturbing sleep.

5.2 Industrial Floor Fan Prototype

  • Foco: Durability and high airflow.
  • Process Adjustments:
  • Use aluminum alloy for blades and housing (alta resistência); anodize to resist corrosion in dusty environments.
  • Add reinforced ribs to the motor bracket (thickness 2mm) to support high-power motors (≥50W).
  • Prototype Value: Conduct 72-hour continuous operation tests; simulate high-temperature (40° c) environments to check component reliability.

Perspectiva da tecnologia YIGU

Na tecnologia Yigu, nós vemos o CNC machining electric fan prototype process como um “functionality validator—it turns design ideas into tangible products while identifying flaws like jitter or excessive noise early. Our team prioritizes two pillars: precision and practicality. For fan blades, we use 5-axis machining to ensure curvature accuracy (± 0,03 mm) and weight balance (difference ≤0.3g) for silent operation. For bases, we optimize counterweight structures and anti-slip pads to meet stability standards. We also integrate 3D scanning post-machining to verify dimensional accuracy, cutting rework rates by 25%. By focusing on these details, we help clients reduce time-to-market by 1–2 weeks. Whether you need a household or industrial fan prototype, we tailor solutions to your performance goals.

Perguntas frequentes

  1. P: How long does the entire CNC machining electric fan prototype process take?

UM: Typically 8–12 working days. This includes 1–2 days for preparation (projeto, Seleção de material), 3–4 days for CNC machining, 1–2 days for post-processing, 1–2 days for assembly, e 1 day for debugging/inspection.

  1. P: Can I use plastic instead of aluminum alloy for industrial fan blades?

UM: Não é recomendado. Industrial fans require high airflow and heavy-duty use—plastic blades may deform under long-term high-speed rotation (≥1500rpm) or break in dusty environments. Aluminum alloy blades offer better strength and heat dissipation, making them suitable for industrial scenarios.

  1. P: What causes fan jitter during operation, and how to fix it?

UM: Common causes are uneven fan blade weight (diferença >0.5g) or misaligned motor shaft mounting (coaxiality error >0.02milímetros). Correções: Re-balance blades by grinding excess material (reduce weight difference to ≤0.3g); re-machine the motor bracket to correct shaft alignment (coaxiality ≤0.02mm). This resolves 90% of jitter issues in 1–2 hours.

Índice
Role até o topo