O CNC machining electric fan prototype process is a systematic workflow that transforms design concepts into physical prototypes, validating appearance authenticity, Estabilidade estrutural, airflow efficiency, e lógica funcional central (Por exemplo, head-shaking smoothness, noise control). Este artigo detalha o processo passo a passo – desde o design preliminar até a depuração final – usando tabelas baseadas em dados, diretrizes práticas, e dicas de solução de problemas para ajudá-lo a enfrentar os principais desafios e garantir o sucesso do protótipo.
1. Preparação Preliminar: Define Requirements & Coloque a fundação
Preliminary preparation sets the direction for the entire prototype development. Ele se concentra em duas tarefas principais: requirements analysis & conceptual design e 3D Modelagem & structural detailing, both tailored to the unique needs of electric fans (Por exemplo, silent operation for bedrooms, stability for floor fans).
1.1 Requirements Analysis & Conceptual Design
Before starting machining, esclarecer os requisitos funcionais e de aparência para evitar objetivos de desenvolvimento desalinhados.
- Esclarecimento de Requisitos Funcionais:
Tipo de ventilador | Foco Funcional Central | Exemplo de especificações principais |
Ventilador de chão | Alcance de balançar a cabeça, estabilidade, alto fluxo de ar | Ângulo de balançar a cabeça: 60°–90°; Peso base ≥2kg |
Ventilador de mesa | Operação silenciosa, tamanho compacto, baixa potência | Ruído ≤40dB; Tamanho ≤300×300×400mm; Potência ≤30W |
Ventilador de teto | Capacidade de carga de carga, fluxo de ar uniforme | Capacidade de carga ≥5kg; Cobertura de fluxo de ar ≥15m² |
- Design de conceito de aparência:
- Crie esboços preliminares ou rascunhos 3D usando ferramentas como Sketchup ou Rinoceronte, considerando:
- Coordenação Estética: Bordas arredondadas (radius 3–5mm) for household fans to fit home decor; geometric shapes for industrial fans.
- Human-Computer Interaction: Button/knob layout (Por exemplo, 3 wind-speed buttons on the fan head for easy reach); indicator light positions (visible but not glaring).
- Environmental Adaptation: Dust-proof grilles for industrial fans; anti-slip base pads for table fans.
Why is this important? Skipping requirement clarification can lead to rework—for example, a bedroom fan prototype without silent design may need 25% more time to optimize fan blade curvature and motor mounting.
1.2 3D Modelagem & Structural Detailing
Use professional CAD software to translate concepts into precise models, ensuring processability for CNC machining.
- Seleção de software: Priorize SolidWorks, E nx, ou Para/e—eles suportam design paramétrico, allowing easy adjustment of dimensions (Por exemplo, fan blade length, base diameter) and compatibility with CAM software.
- Core Structural Design:
- Component Breakdown: Split the fan into parts like Habitação, fan blades, motor bracket, base, e painel de controle for separate machining.
- Key Structure Optimization:
- Housing: Determine material thickness (1–3mm for plastic, 2–4mm for metal) and assembly structures (Snaps, M2–M3 screw holes with ±0.1mm tolerance).
- Fan Blades: Design curved surfaces and angles (15°–25° attack angle) to balance airflow and noise; ensure blade weight difference ≤0.5g for anti-jitter.
- Base: Add weighted blocks or counterweight structures (Por exemplo, 1kg metal plate in plastic bases) to improve stability; integrate rubber anti-slip pads (thickness 2–3mm).
- Head-Shaking Mechanism: For floor/table fans, design gear or connecting rod structures (gear module: 0.5–1mm) to ensure smooth left-right swinging.
- Detail Features: Add brand logos (embossed height 0.8–1mm), heat dissipation holes (diameter 2–3mm, grid pattern), and button icons (silk-screen ready).
2. Seleção de material & Process Planning: Match Materials to Functions
Choosing the right materials and defining machining strategies are critical for prototype performance. This phase follows a “material selection → parameter setting → sequence planning” fluxo de trabalho.
2.1 Seleção de material: Balance Performance & Custo
Different components require materials with specific properties (Por exemplo, lightweight for fan blades, durability for bases). The table below compares suitable options:
Componente | Material recomendado | Propriedades -chave | Processing Advantages | Intervalo de custos (por kg) |
Housing | Plástico ABS / Liga de alumínio | Plástico: Leve, baixo custo; Metal: Durável | Plástico: Easy cutting; Metal: Good for anodization | \(3- )6 (Abs); \(6- )10 (Alumínio) |
Fan Blades | Plástico ABS / Liga de alumínio | Plástico: Low noise; Metal: Alta resistência | Plástico: No burrs; Metal: Suitable for curved machining | \(3- )6 (Abs); \(6- )10 (Alumínio) |
Base | Plástico ABS / Ferro fundido | Plástico: Luz; Ferro fundido: High stability | Plástico: Fast machining; Ferro fundido: Good for weighting | \(3- )6 (Abs); \(8- )12 (Ferro fundido) |
Motor Bracket | Liga de alumínio (6061) | Alta resistência, heat dissipation | Fácil de máquina; Anodization-friendly | \(6- )10 |
Painel de controle | Abs + PC Blend | Resistência ao impacto, isolamento | Smooth surface for silk-screen | \(4- )7 |
Exemplo: Bedroom table fan blades use ABS plastic (low noise, leve), while industrial floor fan blades use aluminum alloy (high strength for heavy-duty use).
2.2 Process Planning: Define Machining Strategies
Clear process planning ensures efficient and precise CNC machining.
- Tool Selection by Material & Tarefa:
Material | Machining Task | Tipo de ferramenta | Especificações |
Plástico (Abs) | Desbaste | Carbide Flat-End Mill | Φ6–10mm, 2–3 teeth |
Plástico (Abs) | Acabamento | Carbide Ball-Nose Mill | Φ2–4mm, 4–6 dentes |
Liga de alumínio | Desbaste | Carbide End Mill | Φ4–6mm, 2 dentes |
Liga de alumínio | Acabamento | Coated Carbide Cutter | Φ3–5mm, 4 dentes |
- Configuração de parâmetros de corte:
Material | Estágio de usinagem | Velocidade (RPM) | Taxa de alimentação (mm/dente) | Profundidade de corte (milímetros) | CoICONTE |
Plástico ABS | Desbaste | 300–600 | 0.2–0.5 | 0.5–2 | Compressed Air |
Plástico ABS | Acabamento | 800–1500 | 0.1–0.2 | 0.1–0.3 | Compressed Air |
Liga de alumínio | Desbaste | 1500–2500 | 0.1–0.3 | 1–3 | Emulsion |
Liga de alumínio | Acabamento | 2500–4000 | 0.05–0.1 | 0.05–0.1 | Emulsion |
- Machining Sequence:
- Process large parts first (base, Habitação) to avoid collision with small parts.
- Machine complex curved surfaces (fan blades) em camadas (0.5–1mm por camada) to ensure shape accuracy.
- Acabar pequenas peças de precisão (motor brackets, Botões do painel de controle) last to prevent damage.
3. Execução de usinagem CNC: Turn Models into Components
Esta fase é o núcleo da criação do protótipo, seguindo um “preparação da máquina → desbaste → semiacabamento → acabamento” fluxo de trabalho para garantir a precisão do componente.
3.1 Machine Preparation & Programação
Proper setup lays the groundwork for error-free machining.
- Seleção de Máquina:
- Most electric fan parts (Habitação, lâminas) can be processed with a 3-fresadora CNC de eixo (precisão de posicionamento ±0,01 mm).
- For fan blades with spiral curved surfaces, use um 5-máquina CNC de eixo or an indexing head to achieve multi-angle machining.
- Programação & Calibração:
- Importe modelos 3D para software CAM (Por exemplo, MasterCam, PowerMill) to generate toolpaths.
- Set machining coordinate systems and safety planes (5–10mm above the workpiece) to avoid tool collision.
- Clamp materials (plastic plates, aluminum blocks) and calibrate the zero point using a touch probe (accuracy ±0.005mm).
3.2 Desbaste & Semi-infinita: Shape the Basic Form
- Desbaste:
- Remove 80–90% of excess material to approach the component’s basic shape.
- For plastic housing: Mill the outer contour first, then dig the internal cavity to avoid material collapse.
- For metal base: Use a large-diameter cutter (Φ8–10mm) to quickly remove allowance; clean chips in real time to prevent scratches.
- Semi-infinita:
- Correct roughing deviations and leave a 0.1–0.2mm allowance for finishing.
- Focus on key structures:
- Fan blade curved surfaces: Ensure smooth transitions between layers.
- Motor bracket holes: Pre-drill to 90% of the final diameter for precise tapping later.
3.3 Acabamento: Achieve Precision & Qualidade da superfície
Finishing determines the prototype’s appearance and functional performance.
- Surface Quality Requirements:
Componente | Rugosidade da superfície | Método de processamento |
Plastic Housing | RA ≤0,8μm | Polishing with 800–1200 mesh sandpaper |
Metal Blades | Ra ≤0.4μm | Jato de areia + polimento; edge chamfering (R0.5mm) |
Painel de controle | RA ≤1,6μm | Coating with anti-scratch film after machining |
- Special Structure Machining:
- Head-Shaking Mechanism: Machine gear grooves or connecting rod holes with high precision (tolerância ±0,03 mm) to ensure smooth movement.
- Fan Blade Mounting Holes: Drill and tap M3–M4 threads; ensure coaxiality with the motor shaft (erro ≤0,02 mm) to avoid jitter.
4. Pós-processamento & Conjunto: Aumente o desempenho & Estética
O pós-processamento remove falhas e prepara componentes para montagem, while careful assembly ensures the prototype functions as intended.
4.1 Pós-processamento: Improve Appearance & Durabilidade
- Deburrendo & Limpeza:
- Peças plásticas: Use a blade to remove burrs; clean with isopropyl alcohol to eliminate oil residue.
- Peças de metal: Sand with 400–800 mesh sandpaper; para alumínio, use a wire brush to remove oxidation.
- Tratamento de superfície:
Componente | Método de tratamento | Propósito |
Plastic Housing | Spray matte/glossy paint; hot-stamp brand logos | Aprimorar a estética; prevent scratches |
Aluminum Blades | Anodization (black/silver); anti-rust coating | Melhorar a resistência à corrosão; add texture |
Painel de controle | Silk-screen buttons/icons; spray insulating paint | Ensure visibility; prevent electrical leakage |
- Functional Enhancement:
- Attach rubber anti-slip pads to the base (adhesive strength ≥5N/cm²).
- Install waterproof membranes on the control panel to prevent dust/water ingress.
4.2 Conjunto & Depuração: Validate Functionality
Follow a sequential assembly order to avoid rework and ensure functional reliability.
- Verificação pré-montagem: Verify all parts meet specs (Por exemplo, fan blade weight balance, screw hole alignment).
- Core Component Assembly:
- Mount the motor to the bracket (use M3 screws, torque: 1.0–1.5 N·m).
- Install fan blades onto the motor shaft (ensure tight fit; no axial movement).
- Assemble the base and housing (use snaps or screws; check stability—tilt angle ≤5° without tipping).
- Functional Debugging:
|
Test Item | Ferramentas/Métodos | Critérios de aprovação |
Airflow Efficiency | Anemometer, measured at a distance of 1 meter from the fan | – Floor fan: Minimum of 5 m/s on high gear – Table fan: Minimum of 3 m/s on high gear |
Head-Shaking Function | Protractor and stopwatch | – Oscillation angle: 60°–90°, as per design specifications – Smooth operation without jitter – Completion of one oscillation cycle within 10 seconds or less |
Noise Level | Sound level meter, measured at 1 meter in a quiet environment | – Household fans: Máximo 40 dB – Industrial fans: Máximo 55 dB |
Safety Performance | Force gauge (for grille protection testing), Insulation tester (for power cord testing) | – Grille gap: 5 mm ou menos (ensuring fingertips cannot reach the blades) – Insulation resistance: 100 MΩ or higher |
5. Casos de aplicação: Tailor Processes to Fan Types
Different fan types require adjusted processes to meet their unique needs.
5.1 Household Table Fan Prototype
- Foco: Silent operation and compact size.
- Process Adjustments:
- Use ABS plastic for blades (low noise) and optimize curvature to reduce wind turbulence.
- Test 2–3 color schemes (branco, light gray) via spray painting to verify user preferences.
- Prototype Value: Validate if the size (≤300×300×400mm) fits nightstands and if noise (≤35dB) avoids disturbing sleep.
5.2 Industrial Floor Fan Prototype
- Foco: Durability and high airflow.
- Process Adjustments:
- Use aluminum alloy for blades and housing (alta resistência); anodize to resist corrosion in dusty environments.
- Add reinforced ribs to the motor bracket (thickness 2mm) to support high-power motors (≥50W).
- Prototype Value: Conduct 72-hour continuous operation tests; simulate high-temperature (40° c) environments to check component reliability.
Perspectiva da tecnologia YIGU
Na tecnologia Yigu, nós vemos o CNC machining electric fan prototype process como um “functionality validator”—it turns design ideas into tangible products while identifying flaws like jitter or excessive noise early. Our team prioritizes two pillars: precision and practicality. For fan blades, we use 5-axis machining to ensure curvature accuracy (± 0,03 mm) and weight balance (difference ≤0.3g) for silent operation. For bases, we optimize counterweight structures and anti-slip pads to meet stability standards. We also integrate 3D scanning post-machining to verify dimensional accuracy, cutting rework rates by 25%. By focusing on these details, we help clients reduce time-to-market by 1–2 weeks. Whether you need a household or industrial fan prototype, we tailor solutions to your performance goals.
Perguntas frequentes
- P: How long does the entire CNC machining electric fan prototype process take?
UM: Typically 8–12 working days. This includes 1–2 days for preparation (projeto, Seleção de material), 3–4 days for CNC machining, 1–2 days for post-processing, 1–2 days for assembly, e 1 day for debugging/inspection.
- P: Can I use plastic instead of aluminum alloy for industrial fan blades?
UM: Não é recomendado. Industrial fans require high airflow and heavy-duty use—plastic blades may deform under long-term high-speed rotation (≥1500rpm) or break in dusty environments. Aluminum alloy blades offer better strength and heat dissipation, making them suitable for industrial scenarios.
- P: What causes fan jitter during operation, and how to fix it?
UM: Common causes are uneven fan blade weight (diferença >0.5g) or misaligned motor shaft mounting (coaxiality error >0.02milímetros). Correções: Re-balance blades by grinding excess material (reduce weight difference to ≤0.3g); re-machine the motor bracket to correct shaft alignment (coaxiality ≤0.02mm). This resolves 90% of jitter issues in 1–2 hours.