A high-performance CNC machining wall breaker prototype is a cornerstone of product development—it validates structural rationality, tests core functions (like high-speed crushing and leak-proofing), and minimizes risks before mass production. This article systematically breaks down the entire development process, from design to testing, using data-driven comparisons, orientações passo a passo, and practical solutions to address key challenges.
1. Preparação Preliminar: Lay the Groundwork for Prototype Precision
Preliminary preparation directly impacts the prototype’s accuracy and functionality. It focuses on two critical tasks: 3D Modelagem & structural optimization e Seleção de material, both tailored to the unique demands of wall breakers (Por exemplo, rotação de alta velocidade, segurança alimentar).
1.1 3D Modelagem & Structural Optimization
Use o software CAD profissional (Por exemplo, SolidWorks, e) to create a detailed 3D model of the wall breaker. The model must cover all components and prioritize structural optimization to avoid machining errors:
- Component Breakdown: Split the machine into parts like the cup body, blade assembly, motor base, painel de controle, e anel de vedação para usinagem e montagem mais fáceis.
- Key Optimization Focus Areas:
- Blade Layout: Design blade angles (15–20°) and distribution to ensure efficient crushing of hard ingredients (Por exemplo, nozes, ossos).
- Sealing Structure: Precisely design the groove for the anel de vedação de silicone (tolerância: ± 0,05 mm) to prevent liquid leakage during high-speed rotation.
- Assembly Compatibility: Mark positions of buckles, furos para parafusos, and positioning grooves to ensure components fit securely (Por exemplo, cup body locks tightly to the base).
Why optimize these structures? Poor blade layout can reduce crushing efficiency by 30%, while a flawed sealing design may cause leakage—leading to rework that adds 2–3 days to the timeline.
1.2 Seleção de material: Combine materiais com funções de componentes
Different components of the wall breaker require materials with specific properties (Por exemplo, wear resistance for blades, transparency for cup bodies). The table below compares the most suitable materials:
Tipo de material | Principais vantagens | Componentes ideais | Intervalo de custos (por kg) | MACHINABILIDADE |
ABS/PC Plastic | Fácil de cortar, baixo custo, simulates injection molding texture | Cup body, body shell, lidar (non-load-bearing parts) | \(2- )5 | Excelente (corte rápido, Desgaste com baixa ferramenta) |
Liga de alumínio | Alta resistência, boa dissipação de calor, durável | Motor base, blade brackets (load-bearing/heat-generating parts) | \(7- )12 | Bom (requires anodizing for rust resistance) |
Aço inoxidável (304/316) | Alta dureza, resistente à corrosão, seguro de comida | Lâminas, componentes de desgaste alto (contacts food/ingredients) | \(15- )20 | Moderado (needs EDM for sharp edges) |
Resin Compound | Baixo custo, fast reproduction of complex shapes | Small-batch replica parts (paired with CNC-machined molds) | \(10- )14 | Moderado (not suitable for standalone structural parts) |
Exemplo: The cup body, which needs transparency for ingredient observation, usos PC Plástico. Lâminas, requiring wear resistance and food safety, are made of 304 aço inoxidável.
2. Processo de usinagem CNC: Transforme Design em Componentes Físicos
A fase de usinagem CNC segue um fluxo de trabalho linear—model slicing & programming → billet preparation → rough machining → finishing—with special attention to wall breaker-specific structures (Por exemplo, curved cup inner walls, sharp blades).
2.1 Model Slicing & Programação
Importar o modelo 3D para o software CAM (Por exemplo, MasterCam, PowerMill) to generate toolpaths and G-code. Key steps include:
- Configuração de parâmetros de corte (by Material):
- Plástico ABS: Velocidade de corte = 1800–2200 rpm; Taxa de avanço = 600–800 mm/min.
- Liga de alumínio: Cutting speed = 1000–1500 rpm; Feed rate = 400–600 mm/min (use coolant to prevent sticking).
- Aço inoxidável: Velocidade de corte = 800–1000 rpm; Taxa de avanço = 200–300 mm/min (slower speed for hardness).
- Seleção de ferramentas:
- Para superfícies curvas (cup inner wall): Usar ball end mills (Φ3–5mm) to ensure smoothness.
- For blades: Usar Ferramentas de carboneto or wire EDM to achieve sharp edges (tolerância: ± 0,05 mm).
- For heat dissipation holes: Usar hollow tools or EDM for complex hole shapes (ensures uniform heat flow).
- Link de vários eixos: Use a five-axis machine tool for complex components (Por exemplo, blade brackets) to avoid tool interference and ensure precision.
2.2 Execução de usinagem: Etapas -chave & Precautions
Proper execution ensures component accuracy. Follow this sequence:
- Billet Preparation: Cut raw materials into billets matching component sizes (Por exemplo, ABS blocks for cup bodies, aluminum sheets for motor bases) and reserve 0.5–1mm machining allowance.
- Aperto: Secure billets to the machine table—use vacuum adsorption for plastic parts (evita a deformação) and three-jaw chucks for metal parts (ensures stability).
- Usinagem áspera: Use large-diameter tools (Φ8–10mm) to remove 80–90% of excess material quickly (salva 30% of machining time).
- Acabamento: Use small-diameter tools (Φ0.5–2mm) to refine details (Por exemplo, blade edges, furos roscados) and achieve surface roughness Ra <0.8μm for visible parts.
Critical Precaution: Replace worn tools immediately—dull tools can increase dimensional error by 0.2mm, ruining blade sharpness or sealing groove precision.
3. Pós-processamento: Enhance Appearance & Funcionalidade
Post-processing removes machining flaws and prepares components for assembly. Inclui tratamento de superfície, Impressão de seda, e verificações de pré-montagem.
3.1 Tratamento de superfície: Improve Durability & Estética
Choose treatment methods based on material and component function:
- Peças plásticas (Cup Body, Concha):
- Lixar (200–800 grit sandpaper) to remove tool marks.
- Sandblasting to simulate injection molding texture.
- Spraying food-grade paint (Por exemplo, matte UV paint) para resistência a arranhões.
- Peças de metal (Motor Base, Lâminas):
- Liga de alumínio: Anodizando (matte/silver finish) Para evitar ferrugem.
- Aço inoxidável: Polishing to achieve a smooth, food-safe surface.
3.2 Impressão de seda & Pre-Assembly Checks
- Impressão de seda: Print brand logos, instruções de operação (Por exemplo, “Alta velocidade,” “Smoothie,” “Limpar”), and safety warnings (Por exemplo, “Do Not Touch Blades”) using high-temperature, wear-resistant ink.
- Pre-Assembly Checks:
- Verify dimensions with calipers (Por exemplo, cup body capacity, sealing groove size).
- Test blade sharpness (use a sample ingredient to check crushing fineness).
- Inspect surface quality (Sem arranhões, Pintura Chips, or ink smudges).
4. Conjunto & Teste: Validate Prototype Performance
Assembly and testing confirm the prototype meets design standards for functionality, segurança, e durabilidade.
4.1 Step-by-Step Assembly
- Anexe o motor base (liga de alumínio) to the body shell using M3 screws (torque: 1.5–2,0 N·m).
- Instale o blade assembly into the motor base (ensure it rotates freely without jitter).
- Fit the anel de vedação de silicone into the cup body’s groove (press firmly to secure).
- Monte o painel de controle onto the body shell (align buttons with internal circuits).
- Lock the cup body to the base (test the buckle for secure attachment).
4.2 Lista de verificação de teste: Garantir confiabilidade
Test the prototype in three key areas:
Categoria de teste | Ferramentas/Métodos | Critérios de aprovação |
Teste funcional | Speed meter, water test | – Blades rotate at 20,000–30,000 rpm (meets crushing requirements).- No water leakage during 5-minute high-speed operation.- Buttons respond correctly (Por exemplo, “Stop” halts rotation immediately). |
Teste Estrutural | Teste de tração, temperature monitor | – Handle resists 5kg pull force without loosening.- Motor base temperature <60°C after 30-minute operation (boa dissipação de calor). |
Teste de aparência | Inspeção visual, medidor de brilho | – No scratches, paint defects, or smudged logos.- Consistent color (no visible aberration between components). |
Perspectiva da tecnologia YIGU
Na tecnologia Yigu, we view CNC machining wall breaker prototypes como um “design validator”—they bridge ideas and mass production while cutting risks. Our team prioritizes two core aspects: precision and safety. For critical parts like blades, nós usamos 304 stainless steel and EDM to ensure sharpness and food safety. For sealing structures, we control tolerance to ±0.03mm (tighter than industry standards) to eliminate leakage. We also integrate 3D scanning post-machining to verify dimensional accuracy. By focusing on these details, we help clients reduce post-production defects by 25–30% and accelerate time-to-market by 1–2 weeks. Whether you need an appearance prototype for exhibitions or a functional one for testing, we tailor solutions to your goals.
Perguntas frequentes
- P: How long does it take to produce a CNC machining wall breaker prototype?
UM: Typically 8–10 days. This includes 1–2 days for 3D modeling, 2–3 days for CNC machining, 1–2 days for post-processing, and 2–3 days for assembly and testing.
- P: Can I use resin instead of ABS/PC plastic for the cup body?
UM: Resin is not ideal. While it’s cheap and easy to cast, it has low impact resistance—high-speed rotation vibrations may cause it to crack. ABS/PC plastic is better for its durability and machinability.
- P: What should I do if the prototype leaks during the water test?
UM: Primeiro, check the silicone sealing ring (replace if damaged). If the ring is intact, verify the sealing groove size (tolerance should be ±0.05mm). If the groove is too large, add a thin food-grade silicone pad to the cup body—this fix takes 1–2 hours and resolves most leakage issues.