A well-executed CNC machining electric baking pan prototype model is a cornerstone of product development—it validates design aesthetics, tests heating performance, and ensures structural reliability before mass production. This article systematically breaks down the entire creation process, from preliminary design to final functional testing, using clear comparisons, orientações passo a passo, and practical solutions to address common challenges, helping you build a prototype that balances precision, funcionalidade, and market readiness.
1. Preparação Preliminar: Coloque as bases para o sucesso do protótipo
Preliminary preparation directly determines the prototype’s accuracy and usability. Ele se concentra em duas tarefas principais: 3D Modelagem & detail design e Seleção de material, both tailored to the unique needs of electric baking pans (Por exemplo, Resistência ao calor, even heat distribution, user safety).
1.1 3D Modelagem & Key Detail Design
Use o software CAD profissional (Por exemplo, SolidWorks, e, Rinoceronte) to create a comprehensive 3D model of the electric baking pan. The model must cover all components and prioritize critical details to avoid machining errors:
- Component Breakdown: Split the baking pan into independent parts like the upper cover, baking tray body, placa de aquecimento, thermostat mount, lidar, e base para usinagem e montagem mais fáceis.
- Key Design Focus Areas:
- Baking Tray Shape: Define dimensions (Por exemplo, redondo: φ28–32cm; quadrado: 25×25cm) and thickness distribution (1.5–2mm for uniform heating) with a tolerance of ±0.05mm.
- Heating Element Layout: Mark positions for heating pipes/plates (even spacing to ensure ±5°C temperature variation) and reserve grooves for wire routing.
- Assembly Interfaces: Design fitting structures (Por exemplo, buckles for upper cover-base connection, screw holes for handle mounting) with clear tolerance requirements (± 0,1 mm).
- Surface Features: Add anti-slip patterns (profundidade: 0.3–0.5mm) on handles, brand logo embossments (altura: 0.8–1mm), and button grooves (to fit control knobs).
Why focus on these details? A poorly designed heating element layout can cause 30% uneven heating, while imprecise assembly interfaces may lead to loose upper covers—requiring rework that adds 2–3 days to the timeline.
1.2 Seleção de material: Combine materiais com funções de componentes
Different components of the electric baking pan need materials with specific properties (Por exemplo, heat conductivity for heating plates, insulation for handles). The table below compares the most suitable materials:
Tipo de material | Principais vantagens | Componentes ideais | Intervalo de custos (por kg) | MACHINABILIDADE |
Aço inoxidável (304/316) | Resistência de alta temperatura (até 800 ° C.), resistente à corrosão | Baking tray body, placa de aquecimento | \(15- )22 | Moderado (precisa de refrigerante para evitar aderência) |
Liga de alumínio (6061) | Excelente condutividade térmica (167 W/m · k), leve | Afotos de calor, Grupo decorativo | \(6- )10 | Excelente (corte rápido, Desgaste com baixa ferramenta) |
Plástico ABS | Força de alto impacto, fácil de moldar | Upper cover, lidar, base housing | \(3- )6 | Bom (low cutting resistance, sem rebarbas) |
computador (Policarbonato) | Transparente, resistente ao calor (até 135 ° C.) | Visualizando janelas (for monitoring food) | \(8- )12 | Moderado (requires high-speed cutting to avoid cracking) |
Borracha de silicone | Resistente ao calor, impermeável | Sealing rings (between upper cover and tray) | \(9- )13 | N / D (moldado, not CNC-machined) |
Exemplo: The heating plate, needing efficient heat transfer, usos liga de alumínio. The baking tray body, requiring corrosion resistance for food contact, is made of 304 aço inoxidável.
2. Processo de usinagem CNC: Transforme Design em Componentes Físicos
A fase de usinagem CNC segue um fluxo de trabalho linear—programação & toolpath planning → workpiece clamping → roughing & acabamento—with special attention to electric baking pan-specific structures (Por exemplo, curved tray surfaces, heating element grooves).
2.1 Programação & Planejamento de percurso
Importar o modelo 3D para o software CAM (Por exemplo, MasterCam, PowerMill) to generate toolpaths and G-code. Key steps include:
- Configuração de parâmetros de corte (by Material):
- Aço inoxidável: Speed = 800–2000 rpm; Feed = 0.05–0.1mm/tooth; Cutting depth = 0.3–1mm (Use ferramentas de carboneto).
- Liga de alumínio: Speed = 3000–6000 rpm; Feed = 0.1–0.2mm/tooth; Cutting depth = 1–2mm (use high-speed steel tools).
- Plásticos (ABS/PC): Speed = 1500–3000 rpm; Feed = 0.08–0.15mm/tooth; Cutting depth = 0.5–1mm (use coolant for PC to prevent softening).
- Seleção de ferramentas:
- Desbaste: Use fresas de topo/fresas de face com diâmetro de 8–16 mm para remover 80–90% do excesso de material.
- Acabamento: Use fresas de ponta esférica de 2–6 mm de diâmetro (for curved tray surfaces) or fine boring cutters (for thermostat mount holes).
- Estruturas Especiais: Usar five-axis machining for complex curved trays (avoids tool interference) e Música eletrônica (Usinagem de descarga elétrica) for heating element grooves (ensures positional accuracy ±0.03mm).
2.2 Panificação da peça de trabalho & Execução de usinagem
A fixação adequada evita deformações e garante precisão. A tabela abaixo descreve métodos de fixação para diferentes componentes:
Tipo de componente | Material | Método de fixação | Principais precauções |
Baking Tray Body | Aço inoxidável | Alicate chato + blocos de suporte | Adicione almofadas antiderrapantes para evitar arranhões na superfície; garantir planicidade durante a fixação |
Placa de aquecimento | Liga de alumínio | Plataforma de adsorção a vácuo | Distribuição uniforme da pressão para evitar deformação em paredes finas |
Tampa Superior | Plástico ABS | Garras macias personalizadas | Reduza a força de fixação (≤50N) para evitar rachaduras |
Lidar | Plástico ABS | Cabeça de indexação | Alinhe com posições de furo pré-marcadas para perfuração precisa |
Dicas de execução de usinagem:
- Para tabuleiros curvos: Usar fresamento em camadas em espiral (0.5mm por camada) para garantir superfícies lisas (Rá <0.8μm).
- Para ranhuras de elementos de aquecimento: Após fresamento CNC, polir o plano inferior para Ra <0.4μm (reduces thermal conduction resistance).
- Para peças plásticas: Usar de alta velocidade, low-feed cutting (Por exemplo, Abs: 2500 RPM, 0.1mm/dente) to avoid melt sticking to tools.
3. Pós-processamento & Conjunto: Aumente o desempenho & Estética
Post-processing removes machining flaws and prepares components for assembly, while careful assembly ensures the prototype functions safely and smoothly.
3.1 Pós-processamento
- Peças de metal:
- Aço inoxidável: Jateamento de areia (matte texture) or electropolish (alto brilho) to remove tool marks; apply food-grade anti-rust oil.
- Liga de alumínio: Anodizar (color options: black/silver) para resistência à corrosão; hard oxidize (grossura: 5–10μm) para resistência ao desgaste.
- Peças plásticas:
- ABS/PC: Pintar (matte/glossy) or UV print (Logos de marca, instruções de operação); laser engrave graduation lines (for temperature knobs) with 0.1mm depth.
- Sealing Rings: Clean with food-grade disinfectant and apply high-temperature adhesive (for bonding to upper cover grooves).
3.2 Step-by-Step Assembly
- Verificação pré-montagem: Verify all components meet dimensional standards (Por exemplo, baking tray flatness ≤0.1mm, handle hole alignment ±0.05mm).
- Core Component Assembly:
- Anexe o placa de aquecimento to the baking tray body using M3 screws (torque: 1.5–2,0 N·m); seal with silicone gaskets to prevent heat loss.
- Instale o thermostat into its mount (threaded connection) and connect wires to the power interface (use heat-shrinkable tubes for insulation).
- Final Assembly:
- Fasten the upper cover to the base via buckles (ensure 0.5–1mm gap for easy opening/closing).
- Monte o lidar to the upper cover (screw fixing, torque: 1.0–1.2 N·m) and install control knobs into button grooves.
4. Teste funcional & Problem Troubleshooting
Testing validates the prototype’s performance, while troubleshooting resolves common issues to ensure reliability.
4.1 Functional Testing Checklist
Test the prototype in four key areas to validate performance:
Categoria de teste | Ferramentas/Métodos | Critérios de aprovação |
Heating Performance | Thermocouple, temperature data logger | Reaches 200°C within 5–8 minutes; temperature variation ≤±5°C across the tray |
Controle de temperatura | Multimeter, manual knob adjustment | Shuts off at set temperature (Por exemplo, 180° c) and restarts at 160°C; no overheating |
Segurança | Infrared thermometer, pull test | Handle temperature <40°C after 30 minutes of use; handle resists 5kg pull force |
Vedação | Water filling (tray 50% full) | No water leakage from upper cover-tray junction after 10 minutos |
4.2 Problemas comuns & Soluções
Problema | Causa | Solução |
Baking tray flatness exceeding standard (>0.1milímetros) | Clamping deformation, Desgaste da ferramenta | Add support blocks during clamping; replace with new carbide tools |
Large gap between heating plate and thermostat | Positional errors, tolerance accumulation | Use jigs for precise thermostat mounting; optimize machining sequence |
ABS upper cover cracking | Estresse residual, aggressive cutting parameters | Recozir o plástico antes da usinagem (80° C para 2 horas); reduza a taxa de avanço para 0,08 mm/dente |
Heat dissipation hole burrs | Dull drill bits, improper retraction | Replace with new high-speed steel drills; optimize retraction path (arc retraction) |
Perspectiva da tecnologia YIGU
Na tecnologia Yigu, nós vemos CNC machining electric baking pan prototype models como um “performance validator”—they bridge design concepts and mass production while ensuring user safety. Our team prioritizes two core aspects: precision and heat efficiency. For critical parts like heating plates, we use aluminum alloy with five-axis machining to ensure thermal conductivity uniformity (±3% variation). Para peças de contato com alimentos, we strictly select 304 stainless steel and apply food-grade post-processing. We also integrate 3D scanning post-machining to verify dimensional accuracy (tolerância ±0,03 mm). By focusing on these details, we help clients reduce post-production defects by 25–30% and cut time-to-market by 1–2 weeks. Whether you need an appearance prototype for exhibitions or a functional one for testing, we tailor solutions to meet global safety standards.
Perguntas frequentes
- P: How long does it take to produce a CNC machining electric baking pan prototype model?
UM: Typically 7–10 working days. This includes 1–2 days for 3D programming, 2–3 days for CNC machining, 1–2 days for post-processing, 1–2 days for assembly, e 1 day for testing & solução de problemas.
- P: Can I use PC plastic instead of stainless steel for the baking tray body?
UM: Não é recomendado. PC plastic has lower heat resistance (max 135°C) and may deform under long-term baking (180–220 ° C.). Aço inoxidável (304/316) can withstand high temperatures and resist food acid corrosion, making it the only safe choice for the tray body.
- P: What should I do if the prototype has uneven heating across the baking tray?
UM: Primeiro, check the heating element layout (ensure even spacing between pipes/plates). If the layout is correct, verify the heating plate flatness (should be ≤0.1mm). If uneven, re-machine the heating plate with a precision grinder to restore flatness—this fix takes 1–2 hours and resolves most heating uniformity issues.