Aço de liga EN 18CrNiMo7-6: Propriedades, Aplicativos & Guia especializado em fabricação

Fabricação personalizada de peças metálicas

Se você estiver adquirindo materiais para ambientes de alto estresse, peças de precisão – como engrenagens automotivas ou componentes aeroespaciais – o aço-liga EN 18CrNiMo7-6 merece sua atenção. Este aço de baixa liga combina resistência excepcional, resistência ao desgaste, e temperabilidade, tornando-o a melhor escolha para setores onde o fracasso não é uma opção. Abaixo, detalhamos tudo que você precisa saber para usá-lo de forma eficaz, com dados, […]

Se você estiver adquirindo materiais para ambientes de alto estresse, precision parts—like automotive gears or aerospace components—EN 18CrNiMo7-6 alloy steel deserves your attention. Este aço de baixa liga combina resistência excepcional, resistência ao desgaste, e temperabilidade, tornando-o a melhor escolha para setores onde o fracasso não é uma opção. Abaixo, detalhamos tudo que você precisa saber para usá-lo de forma eficaz, com dados, casos do mundo real, and practical insights.

1. Material Properties of EN 18CrNiMo7-6 Alloy Steel

EN 18CrNiMo7-6’s performance starts with its carefully balanced composition and inherent traits. Let’s break them down clearly.

1.1 Composição Química

The alloy’s elements work together to boost strength and durability. Values follow theEM 10084 padrão (the official specification for this steel):

ElementoSímboloComposition Range (%)Key Role
Carbono (C)C0.15 – 0.21Enhances surface hardness and tensile strength; critical for wear-resistant parts
Cromo (Cr)Cr1.50 – 1.80Melhoraresistência à corrosão etemperabilidade; prevents oxidation at high temperatures
Níquel (Em)Em1.40 – 1.70Impulsosimpact toughness (mesmo em baixas temperaturas) and ductility
Molybdenum (Mo)Mo0.25 – 0.35Increasesresistência à fadiga e estabilidade de alta temperatura; reduces brittleness
Manganês (Mn)Mn0.50 – 0.80Melhorausinabilidade and helps refine the alloy’s grain structure
Silício (E)E0.15 – 0.40Acts as a deoxidizer during steelmaking; strengthens the alloy without losing toughness
Enxofre (S)S≤ 0.035Kept low to avoid brittleness and cracking in heat-treated parts
Fósforo (P)P≤ 0.035Limited to prevent cold brittleness (fracture in low-temperature environments)
Azoto (N)N≤ 0.012Minimized to avoid porosity and ensure consistent mechanical properties

1.2 Propriedades Físicas

These traits affect how EN 18CrNiMo7-6 performs in real-world conditions (por exemplo, temperature changes or magnetic applications):

  • Densidade: 7.85 g/cm³ (same as most ferrous alloys, so it’s easy to replace other steels in existing designs)
  • Ponto de fusão: 1420 – 1450°C (high enough for aplicações de alta temperatura like engine parts)
  • Condutividade térmica: 44 C/(m·K) a 20ºC (retains heat well, ideal for parts that operate continuously)
  • Specific heat capacity: 465 J/(kg·K) a 20ºC (stable heat absorption, preventing warping from temperature swings)
  • Thermal expansion coefficient: 12.3 μm/(m·K) (low expansion, critical for precision components like gears)
  • Magnetic properties: Ferromagnético (atrai ímãs, useful for tools like magnetic clamps)

1.3 Propriedades Mecânicas

EN 18CrNiMo7-6’s true strength shines aftertratamento térmico (typically carburizing + têmpera + têmpera). Below are typical values for the alloy in its optimized state:

PropriedadeValor típicoTest Standard
Resistência à tracção1000 – 1200 MPaEN ISO 6892-1
Força de rendimento800 – 950 MPaEN ISO 6892-1
Alongamento10 – 15%EN ISO 6892-1
Dureza (Brinell)280 – 340 HBEN ISO 6506-1
Dureza (Rockwell C.)29 – 35 CDHEN ISO 6508-1
Dureza (Vickers)290 – 350 Alta tensãoEN ISO 6507-1
Resistência ao impacto≥ 70 J.EN ISO 148-1
Força de fadiga~550 MPaEN ISO 13003

1.4 Outras propriedades

  • Resistência à corrosão: Moderado (resists mild moisture and oils; use coatings like zinc plating for marine or chemical environments)
  • Resistência ao desgaste: Excelente (graças a cromo (Cr) and carburizing heat treatment—perfect for moving parts like bearings)
  • Usinabilidade: Bom (softer in its annealed state; use high-speed steel (HSS) or carbide tools with cutting fluid for best results)
  • Weldability: Acceptable (preheat to 200 – 300°C and post-weld heat treat to avoid cracking; use low-hydrogen electrodes)
  • Temperabilidade: Alto (heat treatment penetrates deeply, ensuring uniform strength in thick parts like heavy machinery shafts)

2. Applications of EN 18CrNiMo7-6 Alloy Steel

EN 18CrNiMo7-6’s mix of toughness, força, and wear resistance makes it ideal foraplicações de alto estresse. Aqui estão seus usos mais comuns, com exemplos do mundo real:

2.1 Indústria Automotiva

Cars and trucks rely on parts that handle constant torque and impact. EN 18CrNiMo7-6 is used for:

  • Transmission components: A German automaker uses it for manual gearbox gears—its resistência à fadiga (550 MPa) reduces wear, extending transmission life by 40% contra. aço carbono.
  • Eixos: Heavy-duty pickup truck manufacturers use it for drive shafts; the alloy’s impact toughness (≥70 J) prevents bending during off-road use.
  • Axles: A Japanese automaker switched to EN 18CrNiMo7-6 for commercial vehicle axles, cutting failure rates by 25% in cold climates.

2.2 Aerospace Engineering

Aerospace parts need to be strong yet lightweight. EN 18CrNiMo7-6 is used for:

  • Componentes do trem de pouso: A small aircraft manufacturer uses it for landing gear pins—its resistência à tracção (1000–1200 MPa) handles the impact of landing, even with heavy payloads.
  • Peças do motor: It’s used for turbine blades in small jet engines; its high ponto de fusão (1420–1450°C) withstands engine heat.

2.3 Mecânico & Máquinas Pesadas

Industrial machines need parts that last through constant use. EN 18CrNiMo7-6 is used for:

  • Rolamentos: A European manufacturing plant uses it for conveyor belt bearings—its resistência ao desgaste reduces maintenance downtime by 30%.
  • Rollers: Steel mills use it for rolling mill rollers; the alloy’s dureza (280–340 HB) resists deformation from heavy metal sheets.
  • Componentes estruturais: Construction equipment makers use it for excavator arm joints—its yield strength (800–950 MPa) handles heavy lifting.

3. Manufacturing Techniques for EN 18CrNiMo7-6 Alloy Steel

To get the best performance from EN 18CrNiMo7-6, follow these proven manufacturing steps:

3.1 Steelmaking Processes

The alloy is typically produced using:

  • Forno Elétrico a Arco (EAF): Most common for small to medium batches. Scrap steel is melted, então cromo (Cr), níquel (Em), e molibdênio (Mo) are added to hit the target composition. EAF is flexible and reduces waste.
  • Forno de oxigênio básico (BOF): Used for large-scale production. Molten iron is mixed with oxygen to remove impurities, then alloying elements are added. BOF is faster but requires more precise control.

3.2 Tratamento térmico

Heat treatment is critical to unlock EN 18CrNiMo7-6’s strength. The standard process is:

  1. Carburização: Aqueça até 900 – 950°C in a carbon-rich atmosphere. Adds a hard outer layer (0.8–1.2 mm thick) para resistência ao desgaste.
  2. Têmpera: Cool rapidly in oil. Hardens the entire part.
  3. Temperamento: Aqueça até 500 – 600°C, then cool in air. Reduces brittleness while keeping strength.
  4. Recozimento (optional): Aqueça até 820 – 850°C, cool slowly. Softens the alloy for easier machining.

3.3 Forming Processes

EN 18CrNiMo7-6 is shaped into parts using:

  • Forjamento: Hammered or pressed at high temperature (1100 – 1200°C). Cria forte, dense parts like gears (forging aligns the alloy’s grain, boosting resistência à tracção).
  • Rolando: Passed through rollers to make bars or sheets. Used for basic shapes like shafts.
  • Extrusão: Pushed through a die to make complex shapes. Ideal for aerospace components like landing gear pins.

3.4 Machining Processes

After forming, parts are finished with:

  • Virando: Uses a lathe to make cylindrical parts (por exemplo, eixos). Use cutting fluid to prevent overheating.
  • Fresagem: Uses a rotating cutter to shape gear teeth or bearing races. Carbide tools work best for precision.
  • Perfuração: Creates holes for bolts (por exemplo, in structural components). High-speed drills reduce tool wear.
  • Moagem: Smooths surfaces to tight tolerances (por exemplo, bearing inner rings). Melhora resistência ao desgaste.

4. Estudo de caso: EN 18CrNiMo7-6 in Heavy-Duty Truck Transmissions

A North American truck manufacturer faced a problem: their carbon steel transmission gears kept failing after 200,000 quilômetros. They switched to EN 18CrNiMo7-6—and saw dramatic results.

4.1 Desafio

The manufacturer’s trucks hauled 40-ton loads, putting extreme stress on transmission gears. Carbon steel gears had lowresistência à fadiga (400 MPa), leading to premature wear and costly breakdowns.

4.2 Solução

They switched to EN 18CrNiMo7-6 gears, usando:

  • Carburização (920°C) to add a 1.0 mm hard outer layer.
  • Têmpera + têmpera (550°C) to reach 320 HB dureza e 550 MPa resistência à fadiga.

4.3 Resultados

  • Service life: Gears now last 400,000 km—double the previous lifespan.
  • Economia de custos: Reduced maintenance costs by $150,000 per year (per factory).
  • Desempenho: Gears handle heavy loads without wear, even in -30°C winter conditions (thanks to high impact toughness).

5. Comparative Analysis: EN 18CrNiMo7-6 vs. Outros materiais

How does EN 18CrNiMo7-6 stack up against common alternatives? Below is a side-by-side comparison:

MaterialResistência à tracçãoResistência à corrosãoDensidadeCusto (contra. EN 18CrNiMo7-6)Melhor para
EN 18CrNiMo7-61000–1200 MPaModerado7.85 g/cm³100% (base)Peças de alto estresse (engrenagens, eixos)
Aço inoxidável (304)515 MPaExcelente7.93 g/cm³160%Food/chemical equipment
Aço carbono (A36)400 MPaBaixo7.85 g/cm³50%Peças de baixo estresse (quadros)
Liga de aço (4140)950 MPaModerado7.85 g/cm³80%General machinery
Titânio (Nota 5)1100 MPaExcelente4.43 g/cm³800%Peças aeroespaciais leves

Key takeaway: EN 18CrNiMo7-6 offers betterresistência à tracção eresistência than carbon steel or 4140. It’s cheaper than stainless steel or titanium, making it the best value foraplicações de alto estresse.

Yigu Technology’s Perspective on EN 18CrNiMo7-6 Alloy Steel

Na tecnologia Yigu, we’ve supplied EN 18CrNiMo7-6 parts to automotive and machinery clients for over 15 anos. Its unique mix oftemperabilidadeimpact toughness, eresistência ao desgaste makes it unmatched for high-stress components like transmission gears and axles. We often recommend carburizing heat treatment to maximize its performance, and we’ve seen clients cut maintenance costs by 30–40% after switching from other steels. For clients needing extra corrosion protection, we pair it with advanced coatings. EN 18CrNiMo7-6 will remain a top choice for industries prioritizing durability and reliability.

FAQ About EN 18CrNiMo7-6 Alloy Steel

1. Can EN 18CrNiMo7-6 be used in marine environments?

It has moderateresistência à corrosão, so it needs protection for marine use. We recommend galvanizing or powder coating to prevent rust from saltwater. For extreme cases, pair it with stainless steel fasteners.

2. What’s the best heat treatment for EN 18CrNiMo7-6 gears?

Para engrenagens, usarcementação (900–950°C) + têmpera + têmpera (550°C). This creates a hard outer layer (for wear) and a tough core (for impact), extending gear life by 2–3x.

3. How does EN 18CrNiMo7-6 compare to 4140 liga de aço?

EN 18CrNiMo7-6 has higherníquel (Em) ecromo (Cr) contente, giving it betterimpact toughness (≥70 J vs. 40 J for 4140) eresistência ao desgaste. 4140 is cheaper but less suitable for cold climates or heavy loads. Choose EN 18CrNiMo7-6 for critical parts like transmission gears.

Índice
Role até o topo