Se você trabalha com usinagem de alta velocidade ou precisa de ferramentas que permaneçam afiadas sob calor e pressão, EM 1.3343 high speed steel é uma virada de jogo. This alloy is built for tough cutting tasks—from milling hard metals to drilling precision holes—thanks to its exceptionaldureza vermelha e resistência ao desgaste. Neste guia, vamos detalhar suas principais propriedades, aplicações do mundo real, como é feito, and how it compares to other cutting materials. No final, you’ll know if it’s the right choice for your high-performance tool needs.
1. Propriedades materiais de EN 1.3343 Aço de alta velocidade
EN 1.3343’s reputation as a top-tier high speed steel comes from its carefully balanced composition and standout properties. Let’s break this into four critical areas:
1.1 Composição Química
The elements in EN 1.3343 work together to boost heat resistance, dureza, and durability—essential for high-speed cutting. Below is its typical composition (de acordo com a norma EN):
| Elemento | Faixa de conteúdo (%) | Papel-chave |
|---|---|---|
| Carbono (C) | 0.80 – 0.90 | Forms hard carbides with other elements, boosting wear resistance. |
| Manganês (Mn) | 0.15 – 0.40 | Improves hardenability and reduces brittleness during heat treatment. |
| Silício (E) | 0.15 – 0.40 | Enhances strength and resistance to oxidation at high temperatures. |
| Cromo (Cr) | 3.80 – 4.50 | Supports carbide formation and improvestemperabilidade; aumenta a resistência à corrosão. |
| Tungstênio (C) | 5.50 – 6.75 | A key element fordureza vermelha—retains strength at 600+ °C, critical for high-speed cutting. |
| Molibdênio (Mo) | 4.50 – 5.50 | Works with tungsten to enhance red hardness and reduce brittleness. |
| Vanádio (V) | 1.70 – 2.20 | Forms ultra-hard vanadium carbides, improving edge retention and wear resistance. |
| Cobalto (Co) | 4.50 – 5.50 | Further boosts red hardness and high-temperature stability. |
| Enxofre (S) | ≤ 0.030 | Minimized to avoid weakening the steel and reducing tool life. |
| Fósforo (P) | ≤ 0.030 | Kept low to prevent brittleness, especially under high heat. |
1.2 Propriedades Físicas
These properties determine how EN 1.3343 behaves during machining and tool use—like heat transfer or dimensional stability. All values are measured at room temperature unless stated:
- Densidade: 8.10 g/cm³ (slightly higher than standard steels, due to tungsten and cobalt content).
- Ponto de fusão: 1420 – 1480 °C (high enough to withstand forging and heat treatment without melting).
- Condutividade Térmica: 25 C/(m·K) (inferior ao aço carbono, which helps retain heat in the tool edge during cutting).
- Coeficiente de Expansão Térmica: 11.0 × 10⁻⁶/°C (de 20 para 600 °C; low expansion means tools keep their shape during high-speed cutting).
- Capacidade Específica de Calor: 450 J/(kg·K) (efficient at absorbing heat, reducing the risk of overheating during prolonged use).
1.3 Propriedades Mecânicas
EN 1.3343’s mechanical properties are optimized for cutting tools—prioritizing hardness, retenção de borda, e resistência ao calor. Below are its typical properties after standard heat treatment (têmpera + têmpera):
| Propriedade | Valor típico | Padrão de teste | Por que é importante |
|---|---|---|---|
| Dureza (CDH) | 63 – 66 | EM ISO 6508 | Ultra-high hardness ensures excellent edge retention (crítico parafresas ouexercícios). |
| Resistência à tracção | ≥ 2400 MPa | EM ISO 6892 | Handles high cutting forces without breaking—ideal for machining hard materials. |
| Força de rendimento | ≥ 2000 MPa | EM ISO 6892 | Resists permanent deformation, so tools keep their cutting geometry. |
| Alongamento | ≤ 5% | EM ISO 6892 | Low ductility (expected for hard high speed steels; a trade-off for hardness). |
| Resistência ao Impacto (Entalhe em V Charpy) | ≥ 12 J. (no 20 °C) | EM ISO 148-1 | Moderate toughness—avoids brittle fracture during light shock (por exemplo, tool loading). |
| Dureza Vermelha | Retains 90% hardness at 600 °C | EM ISO 6508 | Lets tools cut at high speeds (30–50 m/min for steel) without softening. |
| Força de fadiga | ~900 MPa (10⁷ ciclos) | EM ISO 13003 | Resists failure from repeated cutting cycles (key for high-volume machining). |
1.4 Outras propriedades
- Resistência à corrosão: Moderado. Chromium content helps resist rust in workshop environments, but avoid long exposure to chemicals or moisture.
- Resistência ao desgaste: Excelente. Tungstênio, vanádio, and cobalt carbides create a hard surface that resists abrasive wear—even when machining materiais duros like stainless steel or alloy steel.
- Usinabilidade: Pobre (in hardened state). It’s extremely hard to machine after heat treatment, so most shaping is done when the steel is annealed (softened to HRC 24–28).
- Temperabilidade: Excelente. It hardens evenly across thick sections (até 30 milímetros), so large tools like gear cutting tools have consistent performance.
- High-temperature Stability: Fora do comum. It maintains strength and hardness at temperatures up to 650 °C—far better than standard tool steels or carbon steel.
2. Aplicações de EN 1.3343 Aço de alta velocidade
EN 1.3343’s red hardness and wear resistance make it ideal for high-speed, high-heat cutting tasks. Aqui estão seus usos mais comuns, com exemplos reais:
2.1 Ferramentas de corte
- Exemplos: Fresas, ferramentas de torneamento, exercícios, e alargadores for machining metals like alloy steel, aço inoxidável, or cast iron.
- Why it works: Red hardness lets tools cut at high speeds without softening. A German machine shop used EN 1.3343 milling cutters for alloy steel parts—tool life increased by 200% contra. standard high speed steel (HSS).
2.2 Broches
- Exemplos: Internal or external broaches for creating complex shapes (por exemplo, splines or keyways) em peças metálicas.
- Why it works: Wear resistance keeps broach teeth sharp through hundreds of cuts. Um EUA. automotive supplier used EN 1.3343 broaches for gear splines—broach life jumped from 5,000 para 15,000 peças.
2.3 Gear Cutting Tools
- Exemplos: Hob cutters or shaping tools for manufacturing gears (automotive or industrial).
- Why it works: Precision edge retention ensures gear teeth have accurate geometry. A Japanese gear maker used EN 1.3343 hob cutters—gear quality improved (fewer surface defects) and tool changes dropped by 60%.
2.4 Machining of Hard Materials
- Exemplos: Tools for machining hardened steel (up to HRC 45), aço inoxidável, ou ligas resistentes ao calor (por exemplo, Inconel).
- Why it works: Ultra-hard carbides resist wear from tough materials. A Chinese aerospace manufacturer used EN 1.3343 drills for Inconel parts—drill life increased from 20 para 80 holes per tool.
3. Técnicas de fabricação para EN 1.3343 Aço de alta velocidade
Turning EN 1.3343 into high-performance tools requires precise, specialized steps. Aqui está uma análise passo a passo:
- Fusão: Matérias-primas (ferro, tungstênio, cobalto, etc.) são derretidos em forno elétrico a arco (EAF) or induction furnace at 1550–1650 °C. This ensures uniform mixing of high-value elements like tungsten and cobalt.
- Fundição: Molten steel is poured into ingot molds (small sizes, 5–20 kg) to avoid internal defects. Resfriamento lento (10–20 °C/hour) evita a segregação de carboneto.
- Forjamento: Ingots are heated to 1100–1180 °C and hammered or pressed into tool blanks (por exemplo, 10x10x100 mm for drill bits). Forging breaks up large carbides, improving tool strength.
- Tratamento térmico: The most critical step for maximizing performance:
- Recozimento: Heat to 850–900 °C, hold 2–4 hours, cool slowly. Softens steel to HRC 24–28 for machining.
- Pré-aquecimento: Heat to 800–850 °C, segurar 1 hora. Prepares the steel for quenching.
- Austenitização: Heat to 1200–1240 °C, hold 15–30 minutes. Critical for dissolving carbides.
- Têmpera: Cool rapidly in oil or air (depending on tool size). Hardens steel to HRC 64–67.
- Temperamento: Reheat to 540–580 °C, hold 1–2 hours, cool. Repeat 2–3 times. Reduces brittleness and sets final hardness (HRC 63–66).
- Usinagem: Most shaping (fresagem, perfuração, moagem) is done before quenching (estado recozido). Carbide tools or diamond grinders are used for post-quenching finishing.
- Moagem: Precision grinding (CNC grinders) creates sharp cutting edges and tight tolerances (±0.001 mm for drills or reamers).
- Tratamento de superfície (Opcional):
- Revestimento: Add TiN (nitreto de titânio) or TiAlN (nitreto de alumínio titânio) coatings to boost wear resistance by 50–100%.
- Nitretação: Creates a hard surface layer (CDH 70+) for tools needing extra wear protection.
4. Estudo de caso: EM 1.3343 in Milling Cutters for Hardened Steel
A European automotive parts manufacturer faced a problem: their standard HSS milling cutters were wearing out every 500 parts when machining hardened steel (CDH 40) cubos de engrenagem. They switched to EN 1.3343 cutters (coated with TiAlN), e aqui está o que aconteceu:
- Processo: Cutters were forged, recozido, machined to shape, tratado termicamente (1220 °C quenching + 560 °C tempering), ground to sharp edges, and coated with TiAlN.
- Resultados:
- Cutter life increased to 2,000 peças (300% melhoria) thanks to EN 1.3343’s red hardness and TiAlN coating.
- Machining speed increased from 25 para 40 m/meu (60% mais rápido), reduzindo o tempo de produção.
- Part quality improved: gear hubs had smoother surfaces (Rá 0.8 μm vs. 1.6 μm with old cutters).
- Por que funcionou: EN 1.3343’s tungsten and cobalt retained hardness at the high cutting temperatures (500+ °C), while the TiAlN coating reduced friction between the cutter and steel—minimizing wear.
5. EM 1.3343 contra. Other Cutting Materials
Como é que EN 1.3343 empilhar contra alternativas comuns? Let’s compare key properties for cutting tools:
| Material | Dureza (CDH) | Dureza Vermelha (600 °C) | Resistência ao desgaste | Usinabilidade | Custo (contra. EM 1.3343) | Melhor para |
|---|---|---|---|---|---|---|
| EM 1.3343 Aço de alta velocidade | 63 – 66 | Excelente | Excelente | Pobre (endurecido) | 100% | Corte em alta velocidade de metais duros |
| Standard HSS (EM 1.3340) | 60 – 63 | Bom | Bom | Justo (endurecido) | 60% | General cutting (aço macio) |
| Ferramentas de metal duro | 85 – 90 (Alta tensão) | Excelente | Muito bom | Very Poor | 300% | Ultra-high-speed cutting (50+ m/meu) |
| Ferramentas cerâmicas | 90 – 95 (Alta tensão) | Fora do comum | Muito bom | Extremely Poor | 500% | Machining super-alloys (por exemplo, Inconel) |
| Aço carbono (1095) | 55 – 60 | Pobre | Pobre | Excelente | 20% | Corte em baixa velocidade (soft materials) |
| Liga de aço (4140) | 30 – 40 | Very Poor | Justo | Excelente | 30% | Non-cutting tools (por exemplo, porta-ferramentas) |
Conclusão importante: EM 1.3343 offers the best balance of red hardness, resistência ao desgaste, and cost for high-speed cutting of hard metals. It’s cheaper than carbide or ceramic tools and more durable than standard HSS or carbon steel.
Yigu Technology’s View on EN 1.3343 Aço de alta velocidade
Na tecnologia Yigu, EM 1.3343 is our top choice for clients needing tools that perform in high-speed, high-heat machining. Its unique carbide blend solves the common issue of tool softening—critical for machining hard materials like stainless steel or alloy steel. We often pair it with TiAlN coatings to extend tool life further, helping clients cut costs and boost productivity. Para automotivo, aeroespacial, or industrial manufacturers, EM 1.3343 isn’t just a tool material—it’s a way to achieve consistent, high-quality results in demanding applications.
Perguntas frequentes sobre EN 1.3343 Aço de alta velocidade
1. Pode PT 1.3343 be used for machining non-metallic materials (por exemplo, plastics or wood)?
While EN 1.3343 is technically capable, it’s overkill for non-metallic materials. Its high hardness and red hardness are designed for metal cutting, and using it for plastics/wood would be costly and unnecessary. Para não metais, choose standard HSS or carbon steel tools instead.
2. What’s the best coating for EN 1.3343 ferramentas?
Para a maioria das aplicações, TiAlN (nitreto de alumínio titânio) is the best choice. It resists high temperatures (até 800 °C) e reduz o atrito, making it ideal for high-speed cutting of steel or stainless steel. For machining aluminum, use TiCN (carbonitreto de titânio) to prevent material buildup on the tool edge.
3. É EN 1.3343 more expensive than standard HSS?
Sim, EM 1.3343 costs about 60–70% more than standard HSS (por exemplo, EM 1.3340) due to its cobalt and tungsten content. But it’s worth the investment: EM 1.3343 tools last 2–3x longer, reduce downtime from tool changes, and let you machine at faster speeds—saving money in the long run.
