EM 1.2080 Aço ferramenta: Um guia completo para propriedades, Usos & Mais

Fabricação personalizada de peças metálicas

Se você está procurando um aço para ferramentas que possa suportar o calor, resistir ao desgaste, e desempenho confiável em aplicações difíceis, EM 1.2080 vale a pena olhar mais de perto o aço para ferramentas. Esta liga versátil é a favorita em indústrias como a automotiva, aeroespacial, e fabricação - mas o que o diferencia de outros materiais? Neste guia, vamos decompô-lo […]

Se você está procurando um aço para ferramentas que possa suportar o calor, resistir ao desgaste, e desempenho confiável em aplicações difíceis, EM 1.2080 aço para ferramentas is worth a closer look. Esta liga versátil é a favorita em indústrias como a automotiva, aeroespacial, e fabricação - mas o que o diferencia de outros materiais? Neste guia, vamos detalhar suas principais propriedades, aplicações do mundo real, etapas de fabricação, and how it compares to alternatives. No final, you’ll know if it’s the right choice for your next project.

1. Material Properties of EN 1.2080 Aço ferramenta

EN 1.2080’s performance comes from its unique mix of elements and carefully balanced properties. Let’s break this down into four key areas:

1.1 Composição Química

The elements in EN 1.2080 work together to boost its strength, resistência ao calor, e durabilidade. Below is its typical composition (per EN standards):

ElementoFaixa de conteúdo (%)Key Role
Carbono (C)0.95 – 1.10Hardens the steel and helps form wear-resistant carbides.
Manganês (Mn)0.20 – 0.40Improves hardenability and reduces brittleness during heat treatment.
Silício (E)0.15 – 0.35Enhances strength and resistance to oxidation at high temperatures.
Cromo (Cr)1.30 – 1.60Boosts corrosion resistance and hardenability; supports carbide formation.
Molybdenum (Mo)0.15 – 0.25Increases high-temperature strength and prevents grain growth.
Vanadium (V)0.10 – 0.20Improves wear resistance and edge retention by forming hard vanadium carbides.
Tungsten (C)0.10 – 0.20Enhances heat resistance, making it suitable for high-temperature tools.
Cobalt (Co)≤ 0.10A trace element that slightly boosts strength (kept low for cost efficiency).
Enxofre (S)≤ 0.030Minimized to avoid weakening the steel and reducing toughness.
Fósforo (P)≤ 0.030Kept low to prevent brittleness, especially in cold conditions.

1.2 Propriedades Físicas

These properties affect how EN 1.2080 behaves in different environments—like high heat or pressure. All values are measured at room temperature unless stated:

  • Densidade: 7.85 g/cm³ (similar to most steel alloys, making it easy to calculate part weights).
  • Ponto de fusão: 1420 – 1480 °C (high enough to withstand hot manufacturing processes like forging).
  • Condutividade Térmica: 28 C/(m·K) (better than some tool steels, so it transfers heat more evenly).
  • Coeficiente de Expansão Térmica: 12.0 × 10⁻⁶/°C (de 20 para 600 °C; low expansion means less warping when heated/cooled).
  • Capacidade Específica de Calor: 470 J/(kg·K) (efficient at absorbing and releasing heat, useful for tools that cycle between hot and cold).

1.3 Propriedades Mecânicas

Mechanical properties determine how EN 1.2080 holds up under stress—like cutting, estampagem, or heavy loads. These values are typical after standard heat treatment (têmpera + tempering at 200 °C):

PropriedadeValor típicoTest StandardWhy It Matters
Dureza (CDH)58 – 62EN ISO 6508High hardness means the tool retains its edge and resists wear (critical for cutting tools).
Resistência à tracção≥ 1900 MPaEN ISO 6892Handles high pulling forces without breaking—ideal for load-bearing machine parts.
Força de rendimento≥ 1700 MPaEN ISO 6892Resists permanent deformation, so tools keep their shape during use.
Alongamento≤ 4%EN ISO 6892Low ductility (normal for hard tool steels; a trade-off for high hardness).
Resistência ao Impacto (Entalhe em V Charpy)≥ 18 J. (no 20 °C)EN ISO 148-1Moderate toughness—prevents brittle fracture in shock-loaded applications.
Fatigue Strength~750 MPa (10⁷ cycles)EN ISO 13003Resists failure from repeated stress (key for high-cycle tools like punches).

1.4 Outras propriedades

  • Resistência à corrosão: Bom. The chromium content helps it resist rust in mild environments (por exemplo, workshop air), but it’s not fully stainless—avoid long exposure to chemicals.
  • Resistência ao desgaste: Excelente. Carbon and vanadium form hard carbides that protect against abrasive wear (perfect for dies and cutting tools).
  • Usinabilidade: Justo. It’s harder to machine than low-carbon steel, but annealing (heating to 800–850 °C and cooling slowly) softens it to HRC 22–26, making machining easier.
  • Temperabilidade: Very good. It hardens evenly across thick sections (até 40 milímetros), so large tools have consistent performance.
  • Red Hardness: Forte. It retains hardness at high temperatures (até 450 °C), making it suitable for hot working tools like extrusion dies.

2. Applications of EN 1.2080 Aço ferramenta

EN 1.2080’s mix of heat resistance, resistência ao desgaste, and toughness makes it useful in many industries. Aqui estão seus usos mais comuns, com exemplos reais:

2.1 Ferramentas de corte

  • Exemplos: Exercícios, torneiras, fresas finais, and saw blades for machining metals (por exemplo, aço, alumínio).
  • Why it works: Alta dureza (HRC 58–62) keeps edges sharp, even after thousands of cuts. Um EUA. machine shop reported that EN 1.2080 drills lasted 25% longer than standard high-speed steel (HSS) drills when machining mild steel.

2.2 Dies and Molds

  • Exemplos: Cold stamping dies (for making metal brackets), hot extrusion dies (for aluminum profiles), e moldes de injeção de plástico (para peças de alto volume).
  • Why it works: Its red hardness resists heat damage in hot dies, while wear resistance prevents die degradation. A Chinese manufacturer used EN 1.2080 for aluminum extrusion dies and saw die life increase from 50,000 para 120,000 peças.

2.3 Machine Parts

  • Exemplos: Punches, shear blades, and gear teeth for industrial machinery.
  • Why it works: High tensile strength handles heavy loads, and fatigue resistance prevents failure from repeated use. A German factory used EN 1.2080 shear blades to cut steel sheets—blade life doubled compared to alloy steel blades.

2.4 Automotive and Aerospace Components

  • Exemplos: Assentos de válvula (motores automotivos) and small turbine parts (aeroespacial).
  • Why it works: Red hardness lets it withstand high temperatures in engines and turbines. A Japanese auto parts maker tested EN 1.2080 valve seats in gasoline engines—they lasted 60,000+ miles without wear.

2.5 Hot Working Tools

  • Exemplos: Forging dies, hot upsetting dies, and heat treatment fixtures.
  • Why it works: It retains hardness at 450 °C, so it doesn’t soften under the heat of hot metal. A Indian forging shop used EN 1.2080 dies for forging steel bolts—die maintenance dropped by 30%.

3. Manufacturing Techniques for EN 1.2080 Aço ferramenta

Turning EN 1.2080 into usable parts requires careful steps. Aqui está uma análise passo a passo:

  1. Fusão: Matérias-primas (iron, carbono, cromo, etc.) are melted in an electric arc furnace (EAF) at 1500–1600 °C. This ensures all elements mix evenly.
  2. Fundição: Molten steel is poured into molds to make ingots (large blocks) or near-net-shape parts. Slow cooling prevents cracks.
  3. Forjamento: Ingots are heated to 1100–1200 °C and pressed/hammered into shapes (por exemplo, die blanks). Forging improves grain structure, making the steel stronger.
  4. Tratamento térmico: The most important step—standard cycle:
    • Recozimento: Heat to 800–850 °C, hold 2–4 hours, cool slowly. Softens steel for machining.
    • Têmpera: Heat to 950–1050 °C, hold 1–2 hours, tempere em óleo. Hardens steel to HRC 60–63.
    • Temperamento: Reheat to 180–250 °C (for cold tools) or 400–450 °C (for hot tools), hold 1–3 hours, cool. Reduces brittleness and sets final hardness.
  5. Moagem: Após tratamento térmico, parts are ground to precise sizes (por exemplo, 0.001 mm tolerance for cutting tools). This removes surface flaws and improves finish.
  6. Usinagem: Perfuração, fresagem, or turning—done before quenching (when steel is soft). Use carbide tools for best results.
  7. Tratamento de superfície: Optional steps like nitriding (adds a hard surface layer) ou revestimento (por exemplo, TiAlN) to boost wear resistance even more.

4. Estudo de caso: EM 1.2080 in Hot Extrusion Dies

A European aluminum manufacturer had a problem: their alloy steel extrusion dies for making window frames were failing after 50,000 parts due to heat softening. They switched to EN 1.2080, e aqui está o que aconteceu:

  • Processo: The dies were forged, recozido (CDH 24), machined to shape, quenched (1000 °C), tempered (420 °C), and ground to tolerance.
  • Resultados:
    • Die life jumped to 120,000 peças (140% melhoria).
    • Downtime dropped by 50% (fewer die changes).
    • Extruded parts had smoother surfaces (thanks to EN 1.2080’s even hardness).
  • Why it worked: EN 1.2080’s red hardness kept the die hard at 400 °C (the temperature of molten aluminum), while its wear resistance prevented scratches from the aluminum.

5. EM 1.2080 contra. Outros materiais

How does EN 1.2080 compare to common alternatives? Let’s look at key properties:

MaterialDureza (CDH)Resistência ao desgasteRed HardnessResistência à corrosãoCusto (contra. EM 1.2080)Melhor para
EM 1.2080 Aço ferramenta58 – 62ExcelenteForteBom100%Hot/cold dies, ferramentas de corte
Aço Rápido (HSS)60 – 65Muito bomVery StrongPobre90%High-speed cutting (por exemplo, fresagem)
Aço inoxidável (304)20 – 25PobreWeakExcelente130%Corrosion-prone parts (not tools)
Aço carbono (1095)55 – 60BomWeakPobre50%Baixo custo, low-heat tools
Hot Work Tool Steel (EM 1.2344)45 – 50Muito bomExcelenteJusto150%High-temperature dies (por exemplo, forjamento)
Liga de aço (4140)30 – 40JustoWeakJusto70%Partes estruturais (not tools)

Key takeaway: EM 1.2080 offers a better balance of wear resistance and red hardness than carbon or alloy steel. It’s cheaper than dedicated hot work tool steel (EM 1.2344) while still handling moderate high-temperature tasks.

Yigu Technology’s View on EN 1.2080 Aço ferramenta

Na tecnologia Yigu, EM 1.2080 is a go-to for clients needing versatile tool steel. Its ability to perform in both cold and moderate hot applications makes it a cost-effective choice—no need to stock two separate steels for different tools. We often recommend it for extrusion dies and cutting tools, as its wear resistance and red hardness reduce downtime and boost productivity. For clients needing extra corrosion resistance, we pair it with our surface coating services to extend part life even further. It’s a reliable alloy that delivers consistent results across industries.

FAQ About EN 1.2080 Aço ferramenta

1. Can EN 1.2080 be used for tools that reach temperatures above 450 °C?

Não, EN 1.2080’s red hardness only holds up to 450 °C. For tools that need to handle higher temperatures (por exemplo, 600 °C in forging), choose a dedicated hot work tool steel like EN 1.2344.

2. What’s the best way to machine EN 1.2080?

Machine EN 1.2080before quenching (when it’s annealed to HRC 22–26). Use carbide cutting tools with low feed rates (0.1–0.2 mm/rev) and high cutting speeds (100–150 m/min) for best results. Avoid machining after quenching—it’s too hard and will damage tools.

3. Is EN 1.2080 suitable for making plastic injection molds?

Sim! Its wear resistance prevents degradation from repeated plastic flow, and its hardness (HRC 58–62) keeps mold surfaces smooth. A common practice is to temper it to HRC 50–55 for injection molds—this balances hardness and toughness to avoid cracking.

Índice
Role até o topo