Aço para rolamento AISI M50: Propriedades, Aplicativos & Guia de fabricação

fabricação personalizada de peças metálicas

Se você trabalha em setores de alto desempenho como aeroespacial, corrida, ou fabricação de turbinas, você precisa de aço para rolamentos que possa suportar velocidades e temperaturas extremas. Aço para rolamentos AISI M50 - um rolamento de alta velocidade, liga de molibdênio-vanádio - oferece exatamente isso. Este guia detalha suas principais propriedades, usos no mundo real, processo de fabricação, e como ele se compara a outros materiais, ajudando você a escolher o aço certo […]

Se você trabalha em setores de alto desempenho como aeroespacial, corrida, ou fabricação de turbinas, you need bearing steel that can handle extreme speeds and temperatures.AISI M50 bearing steel—a high-speed, liga de molibdênio-vanádio - oferece exatamente isso. Este guia detalha suas principais propriedades, usos no mundo real, processo de fabricação, e como ele se compara a outros materiais, helping you choose the right steel for high-stress applications.

1. Material Properties of AISI M50 Bearing Steel

AISI M50’s unique alloy composition (especially vanadium and molybdenum) sets it apart from standard bearing steels. Let’s explore its properties in detail.

1.1 Composição Química

AISI M50 follows strict American Iron and Steel Institute (AISI) padrões, garantindo um desempenho consistente. Abaixo está sua composição química típica:

ElementoSímboloFaixa de conteúdo (%)Key Role
Carbono (C)C0.80 – 0.88Aumenta a dureza e a resistência ao desgaste
Cromo (Cr)Cr4.00 – 4.50Improves hardenability and corrosion resistance
Molybdenum (Mo)Mo4.25 – 5.00Boosts high-temperature strength and toughness
Vanadium (V)V1.75 – 2.25Forms hard carbides for exceptional wear resistance
Manganês (Mn)Mn0.15 – 0.40Increases workability and tensile strength
Silício (E)E0.15 – 0.40Ajuda na desoxidação durante a produção de aço
Enxofre (S)S≤ 0.015Minimized to avoid brittleness and fatigue cracks
Fósforo (P)P≤ 0.015Controlled to prevent grain boundary cracking
Níquel (Em)Em≤ 0.30Quantidade de rastreamento, nenhum grande impacto no desempenho

1.2 Propriedades Físicas

These properties describe how AISI M50 behaves under physical conditions like heat and magnetism:

  • Densidade: 7.81 g/cm³ (slightly lower than standard carbon-chromium steels)
  • Ponto de fusão: 1,420 – 1,460 °C (2,588 – 2,660 °F)
  • Condutividade Térmica: 42.0 C/(m·K) no 20 °C (temperatura ambiente)
  • Coeficiente de Expansão Térmica: 11.2 × 10⁻⁶/°C (de 20 – 100 °C)
  • Propriedades Magnéticas: Ferromagnético (atrai ímãs), útil para classificação e testes não destrutivos.

1.3 Propriedades Mecânicas

Mechanical properties define AISI M50’s performance under force—critical for high-speed applications. All values are measured after standard heat treatment (vacuum quenching and tempering):

PropriedadeMétodo de mediçãoValor típico
Dureza (Rockwell)CDH63 – 65 CDH
Dureza (Vickers)Alta tensão700 – 750 Alta tensão
Resistência à tracçãoMPa≥ 2,400 MPa
Força de rendimentoMPa≥ 2,200 MPa
Alongamento% (em 50 milímetros)≤ 5%
Resistência ao ImpactoJ. (no 20 °C)≥ 12 J.
Fatigue LimitMPa (rotating beam)≥ 1,100 MPa

1.4 Outras propriedades

AISI M50’s standout properties make it ideal for extreme conditions:

  • Desempenho em alta temperatura: Maintains hardness and strength up to 315 °C (600 °F)—perfect for turbine or aerospace bearings.
  • Resistência ao desgaste: Vanadium carbides create an ultra-hard surface, reducing wear from high-speed rolling contact.
  • Resistência à fadiga: Can withstand millions of high-speed cycles without failing, even under heat.
  • Temperabilidade: Excellent—achieves uniform hardness across thick sections via vacuum heat treatment.
  • Estabilidade Dimensional: Minimizes distortion during heat treatment, ensuring precision in critical parts like bearing races.
  • Resistência à corrosão: Moderado (better than AISI 52100) but still needs coatings for wet/harsh environments.

2. Applications of AISI M50 Bearing Steel

AISI M50’s ability to handle high speeds, aquecer, and wear makes it a top choice for demanding industries. Here are its key uses:

  • Rolamentos: High-speed bearings in jet engines, turbinas a gás, and racing car engines—where temperatures and rotational speeds are extreme.
  • Elementos rolantes: Bolas, rolos, or needles in high-performance bearings (relying on AISI M50’s wear resistance).
  • Corridas: Inner/outer rings of high-speed bearings (needing dimensional stability and heat resistance).
  • Componentes Aeroespaciais: Bearings in aircraft engines, trem de pouso, and auxiliary power units (APUs)—where reliability is life-critical.
  • High-Performance Automotive Parts: Bearings in racing car transmissions, turbochargers, and superchargers.
  • Máquinas Industriais: Bearings in high-speed gearboxes, centrifuges, and machine tool spindles.
  • Turbine Components: Bearings in gas turbines (geração de energia) and steam turbines—handling high temperatures and speeds.
  • Dispositivos Médicos: Precision bearings in high-speed surgical drills (needing wear resistance and sterilizability).
  • High-Speed Machinery: Components in printing presses, textile machines, and robotics—where speed and precision matter.

3. Manufacturing Techniques for AISI M50

Producing AISI M50 requires advanced techniques to unlock its full potential. Aqui está o processo típico:

  1. Siderurgia:
    • AISI M50 is made using an Forno Elétrico a Arco (EAF) with vacuum degassing. This removes impurities (like sulfur and phosphorus) and ensures precise control of alloy elements (especially vanadium and molybdenum).
  2. Rolando:
    • Depois da siderurgia, o metal é Laminado a Quente (no 1,150 – 1,250 °C) em tarugos ou barras. Para peças de precisão, é então Laminado a Frio (temperatura ambiente) para melhorar o acabamento superficial e a precisão dimensional.
  3. Precision Forging:
    • Partes complexas (like custom bearing rings) are forged into near-final shapes at high temperatures. This refines the grain structure and enhances mechanical properties—critical for high-speed performance.
  4. Tratamento térmico:
    • Vacuum heat treatment is mandatory for AISI M50 to avoid oxidation and ensure uniformity:
      • Têmpera: Aqueça até 1,100 – 1,150 °C in a vacuum, then rapidly cool in high-pressure gas (nitrogen or argon) endurecer.
      • Temperamento: Reaquecer para 530 – 560 °C (twice) to reduce brittleness while maintaining high hardness and heat resistance.
      • Carburização: Rarely used—AISI M50’s alloy content already provides sufficient surface hardness.
  5. Usinagem:
    • Tratamento pós-térmico, parts are machined using Moagem (para superfícies ultra-lisas, reducing friction in bearings) e Fresagem (para formas complexas). CNC machines ensure tight tolerances (±0,001mm) for precision parts.
  6. Tratamento de superfície:
    • Etapas opcionais para melhorar o desempenho:
      • Nitretação: Adds a thin, hard outer layer to boost wear and corrosion resistance.
      • Revestimento: Thin ceramic coatings (like TiN) for extreme wear conditions (por exemplo, racing engines).
      • Escurecimento: Forms a protective oxide layer for minor rust prevention.
  7. Controle de qualidade:
    • Rigorous testing ensures compliance with AISI standards:
      • Análise química (via spectrometry) to verify alloy content.
      • Teste de dureza (Rockwell/Vickers) across the part to ensure uniformity.
      • Testes não destrutivos (ultrasonic and magnetic particle testing) to detect internal cracks.
      • Inspeção dimensional (using coordinate measuring machines, CMMs) para verificar tolerâncias.

4. Estudos de caso: AISI M50 in Action

Real-world examples show how AISI M50 solves high-performance challenges.

Estudo de caso 1: Aerospace Engine Bearing Performance

A major aircraft engine manufacturer faced frequent bearing failures in their jet engines (lasting 2,000 flight hours). The original bearings used AISI 52100, which couldn’t handle the engine’s 280 °C operating temperature. Switching to AISI M50 bearings (with nitriding) extended bearing life to 8,000 flight hours. This reduced maintenance costs by $1.2 million per engine over its lifetime.

Estudo de caso 2: High-Speed Turbine Bearing Optimization

A power generation company struggled with turbine bearing failures (todo 6 meses) due to high speeds (15,000 RPM) e calor. They replaced standard bearings with AISI M50 bearings, paired with vacuum heat treatment. Pós-troca, bearing life increased to 3 anos, and downtime for maintenance dropped by 90%.

5. AISI M50 vs. Outros materiais de rolamento

How does AISI M50 compare to other common bearing steels and materials? A tabela abaixo detalha:

MaterialSimilarities to AISI M50Principais diferençasMelhor para
AISI 52100Bearing-grade steel; ferromagneticNo vanadium/molybdenum; lower heat resistanceStandard automotive/industrial bearings
JIS SUJ2Carbon-chromium alloy; resistente ao desgasteNo vanadium; Japanese standard; lower speed capabilityJapanese automotive/light machinery
GCr15Grau de rolamento; carbon-chromiumNo vanadium; Chinese standard; lower heat resistanceChinese industrial machinery
100Cr6European standard; bearing-gradeNo vanadium/molybdenum; lower fatigue resistanceLight-duty industrial bearings
EN 100CrMo7Contains molybdenum; resistente ao desgasteNo vanadium; lower high-temperature strengthHeavy-duty industrial/mining bearings
Aço inoxidável (AISI440C)Resistente à corrosãoLower tensile strength; worse high-speed performanceAmbientes úmidos (processamento de alimentos)
Rolamentos cerâmicos (Si₃N₄)High-speed capabilityIsqueiro; mais caro; frágilUltra-high-speed apps (corrida, MRI machines)
Rolamentos de plástico (PTFE)Resistente à corrosãoLow strength; no high-speed useCarga baixa, low-speed apps (eletrodomésticos)
Aço Rápido (M2)Contains molybdenum/vanadiumLower hardness; worse wear resistanceFerramentas de corte, not bearings

Yigu Technology’s Perspective on AISI M50

Na tecnologia Yigu, AISI M50 is our go-to for clients in aerospace and high-performance automotive industries. Its vanadium-molybdenum composition delivers unmatched heat and wear resistance—critical for extreme speeds. We use vacuum heat treatment and precision grinding to ensure parts meet tight tolerances, making our AISI M50 bearings last 3–4x longer than AISI 52100. For clients needing extra protection, we offer custom nitriding or ceramic coatings. While AISI M50 costs more upfront, it cuts long-term maintenance costs—making it a smart investment for high-stress applications.

FAQ About AISI M50 Bearing Steel

  1. Why is vacuum heat treatment needed for AISI M50?
    Vacuum heat treatment prevents oxidation (which harms surface quality) and ensures uniform heating—critical for AISI M50’s vanadium and molybdenum to form hard carbides. This process guarantees consistent hardness and performance across the part.
  2. Can AISI M50 be used in corrosive environments?
    It has moderate corrosion resistance (better than AISI 52100). For wet or chemical-rich environments (por exemplo, marinho), apply a nitriding layer or ceramic coating to prevent rust and extend service life.
  3. Is AISI M50 more expensive than other bearing steels?
    Yes—AISI M50 costs 2–3x more than AISI 52100 or 100Cr6. But its longer life (3–4x) and ability to handle extreme conditions make it cost-effective for high-performance applications like aerospace or racing.
Índice
Role até o topo