AISI 4340 Liga de aço: Propriedades, Usos & Guia de alta resistência

fabricação personalizada de peças metálicas

Se você estiver projetando componentes que precisam lidar com estresse extremo, alto impacto, ou cargas pesadas, como trem de pouso aeroespacial, eixos de guindastes industriais, ou peças automotivas de alto desempenho – você precisa de um material que ofereça resistência e resistência excepcionais. AISI 4340 liga de aço é a solução premium: como níquel-cromo-molibdênio (Ni-Cr-Mo) liga, oferece maior resistência à tração, limite de fadiga, e tenacidade a baixas temperaturas do que classes de liga inferior, como […]

Se você estiver projetando componentes que precisam lidar com estresse extremo, alto impacto, ou cargas pesadas, como trem de pouso aeroespacial, eixos de guindastes industriais, or high-performance automotive parts—you need a material that delivers exceptional strengthe toughness.AISI 4340 liga de aço is the premium solution: como níquel-cromo-molibdênio (Ni-Cr-Mo) liga, it offers higherresistência à tracçãolimite de fadiga, and low-temperature toughness than lower-alloy grades like AISI 4130 or AISI 4140. Este guia detalha suas propriedades, aplicações do mundo real, processo de fabricação, and material comparisons to help you solve the most demanding high-load design challenges.

1. Material Properties of AISI 4340 Liga de aço

AISI 4340’s performance comes from its quadruple-alloy design: nickel boosts toughness, chromium enhances corrosion resistance and hardenability, molybdenum improves high-temperature strength, and controlled carbon balances strength and ductility. Let’s explore its key properties in detail.

1.1 Composição Química

AISI 4340 adheres to ASTM A29/A29M standards, with precise control over alloy elements to prioritize high strength and toughness. Below is its typical composition:

ElementoSímboloFaixa de conteúdo (%)Key Role
Carbono (C)C0.38 – 0.43Enables heat treatment; delivers baseresistência à tracção
Cromo (Cr)Cr0.70 – 0.90Enhancesresistência à corrosão e temperabilidade; improves wear resistance
Molybdenum (Mo)Mo0.20 – 0.30Raiseslimite de fadiga e estabilidade de alta temperatura; prevents creep under heavy loads
Níquel (Em)Em1.65 – 2.00Core toughness booster; maintainsimpact toughness at low temperatures (-40 °C)
Manganês (Mn)Mn0.60 – 0.80Refines grain structure; enhancesductilidade without reducing strength
Silício (E)E0.15 – 0.35Aids deoxidation; supports structural stability during heat treatment
Fósforo (P)P≤ 0.035Minimized to avoid brittle fracture in low-temperature or high-stress conditions
Enxofre (S)S≤ 0.040Controlled to balanceusinabilidade e resistência (lower S = better impact resistance)
Vanadium (V)V≤ 0.03Trace element; refines grains for uniform strength across thick sections
Cobre (Cu)Cu≤ 0.30Trace element; adds mild atmospheric corrosion resistance for outdoor parts

1.2 Propriedades Físicas

These traits make AISI 4340 suitable for extreme environments—from sub-zero aerospace conditions to high-heat industrial machinery:

  • Densidade: 7.85 g/cm³ (same as standard steels)—simplifies weight calculations for heavy-load parts like crane shafts
  • Ponto de fusão: 1,425 – 1,450 °C (2,597 – 2,642 °F)—compatible with forging and heat treatment for complex shapes
  • Condutividade Térmica: 42.0 C/(m·K) no 20 °C; 38.0 C/(m·K) no 300 °C—ensures even heat distribution during quenching (reduces distortion)
  • Coeficiente de Expansão Térmica: 11.5 × 10⁻⁶/°C (20 – 100 °C)—minimizes stress from temperature swings (por exemplo, aerospace takeoff/landing cycles)
  • Propriedades Magnéticas: Ferromagnetic—enables non-destructive testing (END) like ultrasonic phased array to detect internal defects in thick parts.

1.3 Propriedades Mecânicas

AISI 4340’s mechanical performance is unmatched among mid-range alloy steels, especially after heat treatment. Below are typical values for common conditions:

PropriedadeMétodo de mediçãoAnnealed (Soft Condition)Quenched & Tempered (300 °C)Quenched & Tempered (600 °C)
Dureza (Rockwell)CDH20 – 23 CDH52 – 55 CDH30 – 33 CDH
Dureza (Vickers)Alta tensão190 – 220 Alta tensão500 – 530 Alta tensão290 – 320 Alta tensão
Resistência à tracçãoMPa (ksi)700 MPa (102 ksi)1,800 MPa (261 ksi)1,050 MPa (152 ksi)
Força de rendimentoMPa (ksi)450 MPa (65 ksi)1,600 MPa (232 ksi)900 MPa (130 ksi)
Alongamento% (em 50 milímetros)22 – 26%7 – 9%16 – 18%
Resistência ao ImpactoJ. (no -40 °C)≥ 70 J.≥ 30 J.≥ 55 J.
Fatigue LimitMPa (rotating beam)350 MPa800 MPa500 MPa

1.4 Outras propriedades

AISI 4340’s traits solve high-load design challenges:

  • Weldability: Moderate—requires preheating to 250–300 °C and post-weld heat treatment (PWHT) to avoid cracking, but produces strong joints for load-bearing parts.
  • Formabilidade: Fair—best forged (not bent) in the annealed condition; formas complexas (por exemplo, espaços em branco de engrenagem) are created via hot forging to maintain strength.
  • Usinabilidade: Good in the annealed condition (20–23 HRC); heat-treated parts need carbide tools (due to high hardness) but still cut cleanly.
  • Resistência à corrosão: Moderate—resists mild rust and chemicals; para ambientes agressivos (por exemplo, marinho), add chrome plating or ceramic coating.
  • Toughness: Exceptional—nickel content keeps it tough at -40 °C (critical for aerospace and cold-climate industrial parts), even at high strength.

2. Applications of AISI 4340 Liga de aço

AISI 4340’s high strength-toughness balance makes it ideal for components that can’t fail under extreme loads. Here are its key uses:

  • Componentes Aeroespaciais: Landing gear struts, engine crankshafts, and helicopter rotor shafts—handles takeoff/landing impacts and sub-zero temperatures.
  • Peças automotivas: High-performance racing engine crankshafts, engrenagens de transmissão, and differential housings—tolerates high torque and engine heat.
  • Componentes Mecânicos: Heavy-duty shafts (crane, excavator), hydraulic press rams, and turbine rotors—supports loads up to 100+ tons without bending.
  • Máquinas Industriais: Mining equipment gears, steel mill rolls, and power generator shafts—resists wear and cyclic loading for 10+ anos.
  • Construction Equipment: Crane hooks, bulldozer axles, and pile driver rods—absorbs impact from heavy lifting and ground contact.
  • Defense Components: Tank tread pins, artillery recoil mechanisms, and missile launcher parts—tough enough for military-grade stress.

3. Manufacturing Techniques for AISI 4340 Liga de aço

Producing AISI 4340 requires precision—especially in heat treatment—to unlock its full strength-toughness potential. Here’s the step-by-step process:

  1. Siderurgia:
    • AISI 4340 is made using an Forno Elétrico a Arco (EAF) (recycles scrap steel) ou Forno de oxigênio básico (BOF). Níquel (1.65–2.00%), cromo (0.70–0.90%), and molybdenum (0.20–0.30%) are added during melting to ensure uniform alloy distribution.
  2. Forjamento & Rolando:
    • Most AISI 4340 parts start as Hot Forged blanks (1,150 – 1,250 °C)—forging aligns grain structure, boosting strength. After forging, blanks are Laminado a Quente to rough shapes (bares, pratos) or left as-forged for near-net-shape parts (por exemplo, virabrequins).
  3. Tratamento térmico (Critical for Performance):
    • Recozimento: Heated to 815–845 °C, held 3–4 hours, slow-cooled to 650 °C. Softens the steel (20–23 HRC) for machining and forging.
    • Têmpera: Heated to 845–870 °C (austenitizing), held 1–2 hours (mais tempo para peças grossas), cooled in oil (not water—reduces cracking risk). Hardens to 58–60 HRC.
    • Temperamento: Reheated to 200–650 °C (based on needs):
      • 300 °C: Max strength (1,800 Tensão MPa) para peças de alta carga.
      • 600 °C: Balanced strength-toughness (1,050 Tensão MPa) for impact-prone parts.
  4. Usinagem:
    • Annealed AISI 4340 is machined with HSS or carbide tools for turning, fresagem, ou perfuração. Heat-treated parts (52–55 HRC) need coated carbide tools (por exemplo, TiAlN) to reduce wear. For precision (por exemplo, bearing seats), finish grinding is used.
  5. Tratamento de superfície:
    • Chapeamento: Cromagem (resistência ao desgaste) for shafts; niquelagem (resistência à corrosão) para peças aeroespaciais.
    • Revestimento: Ceramic coating (high-heat resistance) para peças de motor; revestimento epóxi (resistência química) for industrial machinery.
    • Nitretação: Optional—heats to 500–550 °C in ammonia gas to harden the surface (60–65 HRC) without distortion, ideal for gears and bearings.
  6. Controle de qualidade:
    • Chemical Analysis: Mass spectrometry verifies nickel, cromo, and molybdenum levels (per ASTM A29/A29M).
    • Mechanical Testing: Tração, impacto (-40 °C), and hardness tests confirm performance.
    • END: Ultrasonic testing checks for internal defects; magnetic particle inspection finds surface cracks.
    • Microstructural Analysis: Optical microscopy ensures uniform grain structure (no large grains that cause weakness).

4. Estudos de caso: AISI 4340 in Action

Real projects highlight AISI 4340’s ability to handle extreme loads.

Estudo de caso 1: Aerospace Landing Gear (U.K.)

An aircraft manufacturer needed landing gear struts that could handle 120 kN impact loads and -40 °C temperatures. They chose AISI 4340, tratado termicamente para 300 °C (52 CDH) para força. Depois 10,000 landing cycles, the struts showed no fatigue cracks—outperforming AISI 4140 struts (which failed at 6,000 ciclos). This extended the landing gear’s lifespan by 67%, salvando $200,000 per aircraft in maintenance.

Estudo de caso 2: Industrial Crane Shaft (Alemanha)

A steel mill needed a crane shaft to lift 150-ton steel coils. They replaced the AISI 4140 shaft with AISI 4340 (tratado termicamente para 450 °C for toughness). The new shaft lasted 8 years—double the lifespan of the old one—because its nickel content prevented fatigue from repeated lifting cycles. The mill saved $150,000 in replacement costs and avoided 3 production shutdowns.

5. AISI 4340 contra. Outros materiais

How does AISI 4340 compare to lower-alloy steels and premium materials?

MaterialSimilarities to AISI 4340Principais diferençasMelhor para
AISI 4140Cr-Mo alloy steelNo nickel; lower toughness (-40 °C impact: ≥20 J vs. 30 J.); 25% mais baratoMedium-load parts (por exemplo, eixos de bomba)
AISI 4130Low-alloy steelLower carbon/nickel; weaker (1,450 MPa max tensile); better weldability; 40% mais baratoWelded, low-to-medium load parts
304 Aço inoxidávelResistente à corrosãoExcellent rust resistance; weaker (515 Tensão MPa); 3× pricierCorrosive environments, low-load parts
Liga de titânio (Ti-6Al-4V)Alta resistência ao pesoIsqueiro (4.5 g/cm³); similar strength; 8× pricierAerospace parts where weight is critical
Fibra de CarbonoAlta resistência ao pesoIsqueiro; sem corrosão; poor impact toughness; 10× pricierNon-load-bearing high-performance parts

Yigu Technology’s Perspective on AISI 4340 Liga de aço

Na tecnologia Yigu, AISI 4340 is our top pick for high-load, high-toughness components. Its Ni-Cr-Mo composition solves the biggest pain point for clients: getting strength without sacrificing toughness—critical for aerospace, industrial, and defense projects. We supply AISI 4340 in forged blanks, bares, or plates, with custom heat treatment (300–650 °C) to match project needs. For clients upgrading from AISI 4140 ou titânio, AISI 4340 offers unbeatable value: 2x the toughness of 4140 e 1/8 the cost of titanium, with enough strength for 90% of extreme-load applications.

FAQ About AISI 4340 Liga de aço

  1. Can AISI 4340 be welded for load-bearing parts?
    Yes—but it requires careful preheating (250–300 °C) and post-weld heat treatment (600–650 °C) to reduce residual stress. Use low-hydrogen electrodes (por exemplo, E9018-B3) to avoid cracking, and test welds with ultrasonic inspection to ensure strength.
  2. Is AISI 4340 suitable for low-temperature applications?
    Absolutely—its nickel content maintains impact toughness no -40 °C (even when heat-treated to 52 CDH). For temperatures below -40 °C (por exemplo, arctic machinery), choose a nickel-enriched variant (AISI 4340Ni) for extra toughness.
  3. What’s the maximum thickness for AISI 4340 peças?
    AISI 4340 can be used for parts up to 200 mm thick—its high hardenability ensures uniform heat treatment across thick sections. For parts thicker than 200 milímetros, extend quenching hold time (2–3 horas) and use oil cooling to avoid core softening.
Índice
Role até o topo