Vanadis 10 構造鋼: プロパティ, アプリケーション, 製造ガイド

Metal parts custom manufacturing

Vanadis 10 structural steel is a premium powder metallurgy (PM) alloy steel celebrated for its exceptional 耐摩耗性, タフネス, そして 赤い硬度 - そのユニークによって駆動される形質 化学組成 (高クロム, バナジウム, and tungsten content) and advanced manufacturing processes. Unlike conventional tool steels, Vanadis 10 ハイウェアで優れています, 高ストレスアプリケーション, making it a top choice for toolmaking, 機械加工, die making, 航空宇宙, and automotive industries where durability and precision are non-negotiable. このガイドで, 重要なプロパティを分類します, 実世界の使用, 生産技術, そして、それが他の素材とどのように比較されますか, helping you select it for projects that demand long-lasting performance.

1. Key Material Properties of Vanadis 10 構造鋼

Vanadis 10’s performance stems from its powder metallurgy origins and alloy-rich composition, which deliver a rare balance of wear resistance and toughness—critical for extreme-duty applications.

化学組成

Vanadis 10’s formula prioritizes wear resistance and high-temperature stability, 重要な要素の典型的な範囲があります:

  • 炭素: 1.50-1.60% (high content forms hard carbides with vanadium/tungsten, ブースト 耐摩耗性)
  • クロム: 8.00-9.00% (強化 耐食性 と硬直性, ensuring uniform strength across thick components)
  • バナジウム: 4.00-4.50% (core alloying element—forms ultra-hard vanadium carbides, improving wear resistance and 疲労抵抗)
  • モリブデン: 1.20-1.50% (boosts high-temperature strength and 赤い硬度, critical for hot-work dies)
  • タングステン: 1.80-2.20% (aids carbide formation, enhancing wear resistance and thermal stability)
  • マンガン: ≤0.50% (modest addition improves hardenability without compromising toughness)
  • シリコン: ≤0.80% (鉄鋼メーキング中の酸化を補助し、高温の機械的特性を安定させます)
  • 硫黄: ≤0.030% (維持するための超低 タフネス and avoid cracking during heat treatment)
  • リン: ≤0.030% (冷たい脆性を防ぐために厳密に制御されます, essential for low-temperature applications)

物理的特性

財産Typical Value for Vanadis 10 構造鋼
密度〜7.85 g/cm³ (consistent with standard alloy steels, no extra weight penalty for tool designs)
融点〜1450-1500°C (suitable for hot working and heat treatment processes)
熱伝導率〜38 w/(M・k) (at 20°C—sufficient for heat dissipation in high-speed cutting tools)
比熱容量~0.46 kJ/(kg・k) (20°Cで)
熱膨張係数~11.0 x 10⁻⁶/°C (20-500°C—lower than high-speed steel, reducing thermal stress in hot-work dies)

機械的特性

標準的な熱処理後 (クエンチングと焼き戻し), Vanadis 10 delivers industry-leading performance for high-wear applications:

  • 抗張力: 〜2200-2400 MPa (ideal for heavy-duty tools like cold-work dies or high-speed cutting tools)
  • 降伏強度: 〜2000-2200 MPa (ensures parts resist permanent deformation under extreme loads, such as extrusion dies or aircraft engine components)
  • 伸長: ~8-12% (で 50 mm—sufficient ductility for forming complex tool shapes without cracking)
  • 硬度 (ロックウェルc): 60-64 HRC (熱処理後; 調整可能 55-58 HRC for parts needing extra toughness)
  • 耐衝撃性 (シャルピーv-notch, 20°C): 〜30-45 d/cm² (excellent for wear-resistant steels, preventing brittle failure in high-impact tools like stamping dies)
  • 疲労抵抗: ~900-1000 MPa (at 10⁷ cycles—critical for dynamic-load tools like high-speed milling cutters or automotive engine parts)
  • 耐摩耗性: 素晴らしい (vanadium and tungsten carbides resist abrasion 5-8x better than conventional tool steels, ツールの寿命を延ばします)
  • 赤い硬度: とても良い (retains ~58 HRC at 600°C—suitable for high-temperature applications like hot-work dies or aerospace engine components)

その他のプロパティ

  • 耐食性: 良い (chromium addition forms a passive oxide layer—2-3x more resistant to atmospheric corrosion than high-speed steel; suitable for indoor tools or lightly exposed components)
  • 加工性: 公平 (アニール状態, HB 280-320, requires carbide tools or cubic boron nitride (CBN) tools for efficient cutting; post-heat-treatment grinding is needed for precision edges)
  • タフネス: 素晴らしい (powder metallurgy process eliminates carbide segregation, ensuring uniform toughness across the material—critical for tools subjected to impact)
  • 形成性: 適度 (hot forming recommended for complex shapes—heated to 1050-1100°C for forging into tool blanks; cold forming is limited due to high hardness in annealed state)

2. Real-World Applications of Vanadis 10 構造鋼

Vanadis 10’s unique combination of wear resistance and toughness makes it indispensable in industries where standard materials fail to meet extreme demands. ここに最も一般的な用途があります:

Toolmaking

  • 切削工具: High-speed cutting tools for machining hard materials (例えば。, ステンレス鋼, チタン合金) use Vanadis 10—耐摩耗性 ハンドル 1000+ ツールごとの部品 (vs. 300+ for conventional HSS), reducing tool replacement costs.
  • ドリル: Precision drills for aerospace components (例えば。, タービンブレード) use Vanadis 10—硬度 (60-64 HRC) シャープネスを維持します, そして タフネス avoids breakage in deep-hole drilling.
  • エンドミルズ: High-performance end mills for milling cast iron or hardened steel use Vanadis 10—赤い硬度 600°Cで強度を保持します, enabling faster cutting speeds (400+ m/my) and improving production efficiency.
  • リーマー: タイトトレランスホールの精度リーマー (±0.0005 mm) in medical implants use Vanadis 10—耐摩耗性 maintains hole accuracy over 20,000+ リーム, reducing quality control rejects.
  • ブローチ: Internal broaches for shaping gear teeth or keyways use Vanadis 10—uniform toughness ensures consistent tooth quality, and wear resistance extends broach life by 4x vs. standard tool steel.

ケースの例: A tool shop used M2 high-speed steel for end mills machining hardened steel (50 HRC) but faced tool dulling after 250 部品. Switching to Vanadis 10 extended tool life to 800 部品 (220% 長い) - カットの再編成時間 65% と節約 $60,000 労働とツールのコストで毎年.

機械加工

  • 旋盤ツール: Turning tools for aerospace components (例えば。, 航空機着陸装置) use Vanadis 10—抗張力 (2200-2400 MPA) withstands high cutting forces, そして 疲労抵抗 保証します 15,000+ turns per tool.
  • ミリングカッター: Heavy-duty milling cutters for industrial gear manufacturing use Vanadis 10—耐摩耗性 reduces tooth wear by 70% vs. conventional steel, extending cutter life to 500+ ギア.
  • Shaper tools: Shaper tools for machining large metal plates (例えば。, 船体) use Vanadis 10—タフネス resists impact from uneven surfaces, そして 赤い硬度 handles prolonged cutting without softening.
  • Planer tools: Planer tools for flattening large machine bases use Vanadis 10—耐摩耗性 maintains surface finish consistency, reducing post-machining grinding time by 50%.

Die Making

  • Cold work dies: Cold-heading dies for fastener manufacturing (例えば。, ボルト, ネジ) use Vanadis 10—耐摩耗性 ハンドル 500,000+ スタンピング (vs. 150,000+ for D2 tool steel), reducing die replacement frequency.
  • ホットワークは死にます: Hot-extrusion dies for aluminum or brass use Vanadis 10—赤い硬度 600°Cで強度を保持します, 有効化 10,000+ extrusion cycles before maintenance.
  • スタンピングダイ: Stamping dies for thick steel sheets (例えば。, 10-15 mm automotive body panels) use Vanadis 10—タフネス resists die cracking from high stamping forces, そして 耐摩耗性 extends die life by 3x.
  • Extrusion dies: Extrusion dies for plastic or metal profiles (例えば。, ウィンドウフレーム, aircraft structural parts) use Vanadis 10—精度 ensures consistent profile dimensions, and wear resistance reduces die reworking costs.

航空宇宙

  • 航空機コンポーネント: High-wear aircraft components (例えば。, landing gear bushings, turbine blade retainers) use Vanadis 10—耐摩耗性 耐性 10,000+ フライトサイクル, メンテナンスのダウンタイムの削減.
  • エンジン部品: 高温エンジン部品 (例えば。, fuel injector nozzles, compressor blades) use Vanadis 10—赤い硬度 600°Cで強度を保持します, ensuring reliable performance in jet engines.
  • High-performance tools: Aerospace tooling for machining titanium or composite components uses Vanadis 10—タフネス avoids tool breakage in expensive materials, and wear resistance reduces tool costs.

自動車

  • エンジンコンポーネント: High-performance car engine parts (例えば。, カムシャフト, バルブリフター) use Vanadis 10—耐摩耗性 reduces component degradation, extending engine life to 300,000+ km.
  • 高強度部品: Heavy-duty truck transmission gears or axle components use Vanadis 10—抗張力 ハンドル 1500+ n・mトルク, そして 疲労抵抗 繰り返しのストレスを防ぎます.
  • Tooling for manufacturing: Automotive stamping dies for body panels or chassis components use Vanadis 10—耐久性 ハンドル 1 million+ stampings per die, reducing production downtime for die changes.

3. Manufacturing Techniques for Vanadis 10 構造鋼

Producing Vanadis 10 requires advanced powder metallurgy processes to control carbide distribution and ensure uniform properties—critical for its performance. 詳細なプロセスは次のとおりです:

1. 一次生産

  • パウダー冶金: High-purity iron, クロム, バナジウム, and other alloy powders are mixed in precise ratios (matching Vanadis 10’s chemical composition). The mixture is compacted into green compacts under high pressure (800-1000 MPA) to form dense blanks.
  • Vacuum sintering: Compacts are sintered in a vacuum furnace at 1200-1250°C for 2-4 時間. This fuses the powder particles into a solid material, eliminating porosity and ensuring uniform carbide distribution—key to Vanadis 10’s toughness.
  • 電気弧炉 (EAF): For small batches—scrap steel and alloying elements are melted at 1650-1750°C. Real-time sensors monitor composition to meet Vanadis 10’s standards, though powder metallurgy is preferred for premium properties.
  • 真空アークリメルティング (私たちの): オプション, for ultra-pure Vanadis 10—sintered ingots are remelted in a vacuum to remove impurities (例えば。, 酸素, 窒素), further improving material uniformity and toughness.

2. 二次処理

  • ローリング: Sintered ingots are heated to 1050-1100°C and rolled into plates, バー, or tool blanks via hot rolling mills. Hot rolling refines grain structure and shapes Vanadis 10 into standard tool forms (例えば。, cutter bars, ブランク).
  • 鍛造: 加熱鋼 (1000-1050°C) 複雑な形状に押し込まれます (例えば。, die cavities, cutter heads) using hydraulic presses—improves material density and aligns carbide structure, 耐摩耗性の向上.
  • 熱処理:
  • アニーリング: 850-900°Cに加熱されます 3-5 時間, slow-cooled to 600°C. 硬度をHBに減らします 280-320, making Vanadis 10 machinable and relieving internal stress from rolling/forging.
  • クエンチングと焼き戻し: Heated to 1020-1060°C (オイルで消光されました) then tempered at 500-550°C for 2-3 時間. 硬度を高めます 60-64 HRC and tensile strength to 2400 MPa—used for high-wear tools like cutting dies.

3. 表面処理

  • コーティング: 物理的な蒸気堆積 (PVD) コーティング (例えば。, チタンアルミニウム窒化物, Tialn) are applied to cutting tools—reduces friction, boosts wear resistance by 2-3x, and extends tool life in high-speed machining.
  • ニトリッド: Low-temperature nitriding (500-550°C) 硬い窒化物層を形成します (5-10 μm) on tool surfaces—ideal for dies or cutting tools, enhancing wear resistance without compromising core toughness.
  • 浸炭: Used for parts needing hard surfaces and tough cores (例えば。, stamping die edges)—heated in a carbon-rich atmosphere (900-950°C) 表面に炭素を追加します, then quenched for extra hardness.
  • 研磨: Precision polishing creates a smooth surface (ra 0.1-0.4 μm) for tools like reamers or dies—reduces material adhesion during cutting/forming, improving part quality and tool life.

4. 品質管理

  • 検査: 目視検査は表面欠陥のチェックをチェックします (例えば。, ひび割れ, 気孔率) in sintered or forged Vanadis 10—critical for tool safety and performance.
  • テスト:
  • 引張試験: サンプルは引張の検証に失敗するように引っ張られます (2200-2400 MPA) そして収穫 (2000-2200 MPA) strength—ensures compliance with industry standards (例えば。, ISO 4957).
  • テストを着用してください: Pin-on-disk tests measure wear rate—Vanadis 10 should show 5-8x lower wear than conventional tool steels.
  • 非破壊検査: 超音波検査は、内部欠陥を検出します (例えば。, voids in sintered material) in large components like dies—avoids tool failure during use.
  • 認証: Each batch of Vanadis 10 receives a material certificate, 化学組成と機械的特性の検証 - 航空宇宙のための緩和 (AS9100) and automotive (IATF 16949) アプリケーション.

4. ケーススタディ: Vanadis 10 Structural Steel in Cold-Heading Dies for Fasteners

A fastener manufacturer used D2 tool steel for cold-heading dies (stamping M10 bolts) しかし、2つの問題に直面しました: die wear after 150,000 stampings and high reworking costs. Switching to Vanadis 10 delivered transformative results:

  • Die Life Extension: Vanadis 10’s 耐摩耗性 extended die life to 550,000 スタンピング (267% 長い)—cutting die replacement frequency by 70% と節約 $45,000 annually in die costs.
  • Quality Improvement: Vanadis 10’s uniform carbide distribution reduced bolt surface defects (例えば。, バリ) による 90%, lowering quality control rejects and saving $12,000 annually in rework.
  • コスト効率: Despite Vanadis 10’s 60% より高い材料コスト, メーカーは保存しました $108,000 annually via longer die life and better quality—achieving ROI in 2.8 年.
上にスクロールします