In die casting production—whether for new energy vehicle motor housings or 5G base station cooling modules—post-processing of die casting is the final step that turns raw castings into high-performance, market-ready parts. It fixes casting defects, optimizes surface quality, and ensures parts meet design standards. Questo articolo analizza i suoi obiettivi principali, key processes, quality control methods, defect solutions, and cost-saving tips, helping you build a efficient post-processing workflow.
1. What Are the Core Goals and Principles of Die Casting Post-Processing?
Post-processing isn’t random—it follows clear goals and principles to avoid rework and ensure consistency.
1.1 Core Goals
The work focuses on four key objectives, tailored to part functions:
- Eliminate Casting Defects: Fix issues like shrinkage, pores, and flash left from casting.
- Optimize Surface Quality: Achieve smooth finishes or protective coatings for appearance and durability.
- Adjust Mechanical Properties: Boost strength, durezza, or creep resistance through heat treatment.
- Meet Design Accuracy: Ensure dimensions, planarità, and other specs match engineering requirements.
1.2 Guiding Principles
To prevent secondary damage and save time, two rules are non-negotiable:
- “Rough First, Then Fine”: Do heavy-duty work (like cutting sprues) Primo, then precision tasks (come macinare). This avoids scratching finished surfaces.
- “Inside First, Then Outside”: Machine internal features (like holes) before external ones. Internal machining is more likely to cause minor deformation, which can be corrected when finishing the exterior.
2. What Are the Key Processes in Die Casting Post-Processing?
Post-processing has five core steps, each with specific techniques and parameters. Below is a detailed breakdown for industrial use:
2.1 Sprue, Riser, and Flash Removal
This step cleans up excess material from casting. The method depends on production volume and precision needs:
Batch di produzione | Recommended Method | Vantaggi chiave | Critical Parameters |
Produzione di massa | Automatic Stamping & Taglio | Alta efficienza (1000+ parti/ora); Flat cross-sections | Retain 1-2mm margin to protect the part body; Cut angle <5° |
Small-Medium Batches | Grinding Wheel/Diamond Saw Cutting | Flessibile (works for odd-shaped parts); Basso costo dell'attrezzatura | Use diamond blades for aluminum alloys to reduce burrs |
High-Precision Parts | Five-Axis Laser Cutting | No deformation risk; Taglia forme complesse | Laser power: 500-1000W; Velocità di taglio: 100-300mm/min |
Nota: Utilizzo taglio a freddo for aluminum-magnesium alloys to avoid heat-affected zones that weaken the part.
2.2 Surface Treatment Combinations
Surface treatment improves appearance, Resistenza alla corrosione, e funzionalità. Choose based on material and part use:
Treatment Level | Tecniche | Specifiche chiave | Materiali adatti | Benefici |
Basic Treatment | – Vibration Grinding (ceramic medium + alkaline solution)- Sabbiatura (ASTM B243 ALMEN standard)- Chemical Degreasing (ultrasound-assisted) | – Deburrs edges- Ra=3.2-6.3μm (sabbiatura)- Contact angle <5° (sfuggente) | All die casting metals | Prepares surfaces for advanced treatments; Removes oil/dirt |
Advanced Treatment | – Anodizzante- Ossidazione tramite microarco- Rivestimento in polvere- Elettroplazione | – Corrosion resistance ×3 (Anodizzante)- Hardness HV≥800 (micro-arc oxidation)- Test di spruzzatura salina >1000H (rivestimento in polvere)- Gloss 90GU (elettroplazione) | – Anodizzante: Leghe di alluminio- Micro-arc oxidation: Al/Mg/Ti alloys- Rivestimento in polvere: Tutti i metalli- Elettroplazione: Copper/zinc alloys | Tailored to needs—e.g., anodizing for automotive parts; electroplating for decorative components |
2.3 Lavorazione di precisione
This step refines dimensions and shapes. Success depends on clamping strategies and parameter optimization:
2.3.1 Clamping Strategies for Different Part Types
Tipo di parte | Clamping Method | Precisione | Caso d'uso |
Parti a parete sottile (<3mm) | Vacuum Suction Cup + Honeycomb Support Pad | Prevents deformation | Aluminum alloy laptop casings |
Irregular-Shaped Parts | 3D-Printed Custom Fixtures | Error <0.02mm | 5G base station cooling modules |
Multi-Process Parts | Zero-Point Positioning System | Repeat positioning <0.01mm | New energy vehicle motor housings |
2.3.2 Optimized Machining Parameters
Materiale | Process Type | Alimentazione per dente (mm) | Profondità di taglio (mm) | Velocità di taglio (m/mio) | Metodo di raffreddamento |
Lega di alluminio | Ruvido | 0.15-0.25 | 0.8-1.2 | N / A | Low-temperature compressed air + micro-lubrication |
Acciaio inossidabile | Finitura | N / A | Radiale <0.5 | 80-120 | Same as above |
2.4 Heat Treatment Strengthening
Heat treatment boosts mechanical properties. Use material-specific schemes:
Materiale | Heat Treatment Scheme | Parametri chiave | Risultati |
A380 Aluminum Alloy | T6 Solution Aging | 535±5°C for 8-12h; Quench transfer <30S | Tensile strength σb=320MPa; Elongation δ=8% |
ZAM4-1 Magnesium Alloy | T6 Artificial Aging | 415±5°C for 24h; Inert gas protection | Brinell hardness HB=90; Creep resistance ↓40% |
ZA27 Zinc Alloy | Indurimento dell'età | 90-120°C for 4-8h; Temperatura < eutectic point | Rockwell hardness HRB=95; Stabilità dimensionale |
Note critiche: Magnesium alloys need inert gas to avoid oxidation; Zinc alloys must not exceed eutectic temperature (causes melting).
2.5 Special Processing
For residual stress relief and sealing protection:
Scopo | Tecniche | Parametri | Benefici |
Sollievo dallo stress residuo | – Vibration Aging- Trattamento criogenico | – Frequency 2-50kHz; Amplitude 15-50μm- -196°C liquid nitrogen for 48h | Fatigue life ×2-3 (leghe di alluminio); Prevents long-term deformation |
Sealing Protection | – Silicone Rubber Impregnation (VIPI)- PARYLENE Vapor Deposition | – Pressure resistance IP68- Film thickness 5-25μm | Waterproof/dustproof; Protects electronics (PER ESEMPIO., Alloggi per sensori) |
3. How to Control Quality in Die Casting Post-Processing?
Quality control ensures parts meet standards. Use the right tools and tests:
Quality Aspect | Testing Method | Standards/Requirements |
Precisione dimensionale | Coordinare la macchina di misurazione (CMM) | GB/T. 6414 CT7 |
Air Tightness | HE High-Pressure Leak Detection | Leakage rate <1cm³/[email protected] |
Rugosità superficiale | White Light Interferometer | Decorative surfaces: Ra≤0.8μm |
Adesione del rivestimento | Grid Test + Tape Peeling | ASTM D3359 Method B |
Difetti interni | X-Ray Fluorescence + CT Scanning | Iso 17636-1 Level B |
4. How to Fix Common Post-Processing Defects?
Defects like shrinkage or pores can be resolved with targeted solutions:
Difetto | Causa | Soluzione |
Restringimento (X-ray cloud-like shadows) | Insufficient cooling during casting | Add cooling inserts; Extend holding time to 8-12s |
Peeling (separazione di strati) | Large mold temperature gradient | Use mold temperature controller to keep inlet/outlet temp difference <5° C. |
Pores (tiny air bubbles) | Trapped air during casting | Add more exhaust grooves; Adjust backpressure valve |
Deformazione | Residual stress release | Manual aging treatment; Use calibration fixtures |
Bassa durezza (HRC<48) | Inadequate heat treatment | Laser cladding with TSN coating (hardness HRC62) |
5. How to Control Costs and Cycles in Post-Processing?
Post-processing accounts for a large portion of total costs—optimize to save money and time:
Passaggio di post-elaborazione | Cost Share | Cycle Share | Suggerimenti di ottimizzazione | Risultati |
Basic Treatment | 15-25% | 20-30% | Use automatic rolling grinding lines | Manpower saved by 70% |
Trattamento superficiale | 20-35% | 15-25% | Build coating recycling systems | Consumables reduced by 40% |
Lavorazione di precisione | 30-40% | 30-40% | Adopt turn-mill composite machining centers | Cycle time shortened by 50% |
Ispezione di qualità | 5-10% | 5-10% | Replace manual checks with AI visual inspection | Missed detection rate <0.1% |
6. Yigu Technology’s Perspective on Post-Processing of Die Casting
Alla tecnologia Yigu, vediamo post-processing of die casting as the “value-adding bridge” between raw castings and high-quality parts. I nostri dati mostrano 70% of part failures stem from rushed or mismatched post-processing—e.g., using heat treatment on porous aluminum parts causes cracking.
We recommend a “process-material matching” approach: For ADC12 aluminum alloy motor housings, we pair T6 heat treatment with precision boring to hit flatness <0.05mm/100 mm; Per maniglie medicali in lega di zinco Zamak5, utilizziamo la nanocromatura + incisione laser per soddisfare gli standard ISO 10993 standard di biocompatibilità. Integrando l'automazione (come l'ispezione dell'IA) e schemi specifici del materiale, aiutiamo i clienti a ridurre i costi 25% migliorando al contempo l'affidabilità delle parti.
7. Domande frequenti: Common Questions About Post-Processing of Die Casting
Q1: Can all die casting materials use the same surface treatment?
NO. Per esempio, l'anodizzazione funziona solo su leghe di alluminio (forma uno strato di ossido), mentre l'ossidazione al microarco è migliore per le leghe Al/Mg/Ti. Le leghe di zinco sono spesso galvanizzate per la decorazione, ma la verniciatura a polvere funziona per la maggior parte dei metalli: abbina sempre il trattamento al materiale e alla funzione della parte.
Q2: Why is quench transfer time critical for aluminum alloy heat treatment?
Leghe di alluminio (come l'A380) necessitano di un raffreddamento rapido dopo il trattamento con la soluzione per intrappolare gli elementi di rinforzo. Se il tempo di trasferimento supera 30 Secondi, gli elementi precipitano presto, riducendo la resistenza alla trazione fino a 20%. Utilizziamo sistemi di tempra automatizzati per mantenere i tempi di trasferimento <25 Secondi.
Q3: How to reduce deformation in thin-walled die casting post-processing?
Utilizza tre metodi: 1) Morsetto con ventose a vuoto + cuscinetti a nido d'ape per distribuire la pressione; 2) Utilizzare velocità di taglio basse (50-80M/min per alluminio) per ridurre al minimo la forza; 3) Aggiungere una fase di trattamento criogenico (-196°C per 24 ore) per rilasciare lo stress residuo prima della lavorazione di precisione. Questi riducono la deformazione 60%.