Cosa comporta un'efficace post-elaborazione della pressofusione?

Nylon 3D Stampa

In die casting production—whether for new energy vehicle motor housings or 5G base station cooling modules—post-processing of die casting is the final step that turns raw castings into high-performance, market-ready parts. It fixes casting defects, optimizes surface quality, and ensures parts meet design standards. Questo articolo analizza i suoi obiettivi principali, key processes, quality control methods, defect solutions, and cost-saving tips, helping you build a efficient post-processing workflow.

1. What Are the Core Goals and Principles of Die Casting Post-Processing?

Post-processing isn’t random—it follows clear goals and principles to avoid rework and ensure consistency.

1.1 Core Goals

The work focuses on four key objectives, tailored to part functions:

  • Eliminate Casting Defects: Fix issues like shrinkage, pores, and flash left from casting.
  • Optimize Surface Quality: Achieve smooth finishes or protective coatings for appearance and durability.
  • Adjust Mechanical Properties: Boost strength, durezza, or creep resistance through heat treatment.
  • Meet Design Accuracy: Ensure dimensions, planarità, and other specs match engineering requirements.

1.2 Guiding Principles

To prevent secondary damage and save time, two rules are non-negotiable:

  • “Rough First, Then Fine”: Do heavy-duty work (like cutting sprues) Primo, then precision tasks (come macinare). This avoids scratching finished surfaces.
  • “Inside First, Then Outside”: Machine internal features (like holes) before external ones. Internal machining is more likely to cause minor deformation, which can be corrected when finishing the exterior.

2. What Are the Key Processes in Die Casting Post-Processing?

Post-processing has five core steps, each with specific techniques and parameters. Below is a detailed breakdown for industrial use:

2.1 Sprue, Riser, and Flash Removal

This step cleans up excess material from casting. The method depends on production volume and precision needs:

Batch di produzioneRecommended MethodVantaggi chiaveCritical Parameters
Produzione di massaAutomatic Stamping & TaglioAlta efficienza (1000+ parti/ora); Flat cross-sectionsRetain 1-2mm margin to protect the part body; Cut angle <5°
Small-Medium BatchesGrinding Wheel/Diamond Saw CuttingFlessibile (works for odd-shaped parts); Basso costo dell'attrezzaturaUse diamond blades for aluminum alloys to reduce burrs
High-Precision PartsFive-Axis Laser CuttingNo deformation risk; Taglia forme complesseLaser power: 500-1000W; Velocità di taglio: 100-300mm/min

Nota: Utilizzo taglio a freddo for aluminum-magnesium alloys to avoid heat-affected zones that weaken the part.

2.2 Surface Treatment Combinations

Surface treatment improves appearance, Resistenza alla corrosione, e funzionalità. Choose based on material and part use:

Treatment LevelTecnicheSpecifiche chiaveMateriali adattiBenefici
Basic TreatmentVibration Grinding (ceramic medium + alkaline solution)- Sabbiatura (ASTM B243 ALMEN standard)- Chemical Degreasing (ultrasound-assisted)Deburrs edges- Ra=3.2-6.3μm (sabbiatura)- Contact angle <5° (sfuggente)All die casting metalsPrepares surfaces for advanced treatments; Removes oil/dirt
Advanced Treatment– Anodizzante- Ossidazione tramite microarco- Rivestimento in polvere- ElettroplazioneCorrosion resistance ×3 (Anodizzante)- Hardness HV≥800 (micro-arc oxidation)- Test di spruzzatura salina >1000H (rivestimento in polvere)- Gloss 90GU (elettroplazione)– Anodizzante: Leghe di alluminio- Micro-arc oxidation: Al/Mg/Ti alloys- Rivestimento in polvere: Tutti i metalli- Elettroplazione: Copper/zinc alloysTailored to needs—e.g., anodizing for automotive parts; electroplating for decorative components

2.3 Lavorazione di precisione

This step refines dimensions and shapes. Success depends on clamping strategies and parameter optimization:

2.3.1 Clamping Strategies for Different Part Types

Tipo di parteClamping MethodPrecisioneCaso d'uso
Parti a parete sottile (<3mm)Vacuum Suction Cup + Honeycomb Support PadPrevents deformationAluminum alloy laptop casings
Irregular-Shaped Parts3D-Printed Custom FixturesError <0.02mm5G base station cooling modules
Multi-Process PartsZero-Point Positioning SystemRepeat positioning <0.01mmNew energy vehicle motor housings

2.3.2 Optimized Machining Parameters

MaterialeProcess TypeAlimentazione per dente (mm)Profondità di taglio (mm)Velocità di taglio (m/mio)Metodo di raffreddamento
Lega di alluminioRuvido0.15-0.250.8-1.2N / ALow-temperature compressed air + micro-lubrication
Acciaio inossidabileFinituraN / ARadiale <0.580-120Same as above

2.4 Heat Treatment Strengthening

Heat treatment boosts mechanical properties. Use material-specific schemes:

MaterialeHeat Treatment SchemeParametri chiaveRisultati
A380 Aluminum AlloyT6 Solution Aging535±5°C for 8-12h; Quench transfer <30STensile strength σb=320MPa; Elongation δ=8%
ZAM4-1 Magnesium AlloyT6 Artificial Aging415±5°C for 24h; Inert gas protectionBrinell hardness HB=90; Creep resistance ↓40%
ZA27 Zinc AlloyIndurimento dell'età90-120°C for 4-8h; Temperatura < eutectic pointRockwell hardness HRB=95; Stabilità dimensionale

Note critiche: Magnesium alloys need inert gas to avoid oxidation; Zinc alloys must not exceed eutectic temperature (causes melting).

2.5 Special Processing

For residual stress relief and sealing protection:

ScopoTecnicheParametriBenefici
Sollievo dallo stress residuoVibration Aging- Trattamento criogenicoFrequency 2-50kHz; Amplitude 15-50μm- -196°C liquid nitrogen for 48hFatigue life ×2-3 (leghe di alluminio); Prevents long-term deformation
Sealing ProtectionSilicone Rubber Impregnation (VIPI)- PARYLENE Vapor DepositionPressure resistance IP68- Film thickness 5-25μmWaterproof/dustproof; Protects electronics (PER ESEMPIO., Alloggi per sensori)

3. How to Control Quality in Die Casting Post-Processing?

Quality control ensures parts meet standards. Use the right tools and tests:

Quality AspectTesting MethodStandards/Requirements
Precisione dimensionaleCoordinare la macchina di misurazione (CMM)GB/T. 6414 CT7
Air TightnessHE High-Pressure Leak DetectionLeakage rate <1cm³/[email protected]
Rugosità superficialeWhite Light InterferometerDecorative surfaces: Ra≤0.8μm
Adesione del rivestimentoGrid Test + Tape PeelingASTM D3359 Method B
Difetti interniX-Ray Fluorescence + CT ScanningIso 17636-1 Level B

4. How to Fix Common Post-Processing Defects?

Defects like shrinkage or pores can be resolved with targeted solutions:

DifettoCausaSoluzione
Restringimento (X-ray cloud-like shadows)Insufficient cooling during castingAdd cooling inserts; Extend holding time to 8-12s
Peeling (separazione di strati)Large mold temperature gradientUse mold temperature controller to keep inlet/outlet temp difference <5° C.
Pores (tiny air bubbles)Trapped air during castingAdd more exhaust grooves; Adjust backpressure valve
DeformazioneResidual stress releaseManual aging treatment; Use calibration fixtures
Bassa durezza (HRC<48)Inadequate heat treatmentLaser cladding with TSN coating (hardness HRC62)

5. How to Control Costs and Cycles in Post-Processing?

Post-processing accounts for a large portion of total costs—optimize to save money and time:

Passaggio di post-elaborazioneCost ShareCycle ShareSuggerimenti di ottimizzazioneRisultati
Basic Treatment15-25%20-30%Use automatic rolling grinding linesManpower saved by 70%
Trattamento superficiale20-35%15-25%Build coating recycling systemsConsumables reduced by 40%
Lavorazione di precisione30-40%30-40%Adopt turn-mill composite machining centersCycle time shortened by 50%
Ispezione di qualità5-10%5-10%Replace manual checks with AI visual inspectionMissed detection rate <0.1%

6. Yigu Technology’s Perspective on Post-Processing of Die Casting

Alla tecnologia Yigu, vediamo post-processing of die casting as the “value-adding bridge” between raw castings and high-quality parts. I nostri dati mostrano 70% of part failures stem from rushed or mismatched post-processing—e.g., using heat treatment on porous aluminum parts causes cracking.

We recommend a “process-material matching” approach: For ADC12 aluminum alloy motor housings, we pair T6 heat treatment with precision boring to hit flatness <0.05mm/100 mm; Per maniglie medicali in lega di zinco Zamak5, utilizziamo la nanocromatura + incisione laser per soddisfare gli standard ISO 10993 standard di biocompatibilità. Integrando l'automazione (come l'ispezione dell'IA) e schemi specifici del materiale, aiutiamo i clienti a ridurre i costi 25% migliorando al contempo l'affidabilità delle parti.

7. Domande frequenti: Common Questions About Post-Processing of Die Casting

Q1: Can all die casting materials use the same surface treatment?

NO. Per esempio, l'anodizzazione funziona solo su leghe di alluminio (forma uno strato di ossido), mentre l'ossidazione al microarco è migliore per le leghe Al/Mg/Ti. Le leghe di zinco sono spesso galvanizzate per la decorazione, ma la verniciatura a polvere funziona per la maggior parte dei metalli: abbina sempre il trattamento al materiale e alla funzione della parte.

Q2: Why is quench transfer time critical for aluminum alloy heat treatment?

Leghe di alluminio (come l'A380) necessitano di un raffreddamento rapido dopo il trattamento con la soluzione per intrappolare gli elementi di rinforzo. Se il tempo di trasferimento supera 30 Secondi, gli elementi precipitano presto, riducendo la resistenza alla trazione fino a 20%. Utilizziamo sistemi di tempra automatizzati per mantenere i tempi di trasferimento <25 Secondi.

Q3: How to reduce deformation in thin-walled die casting post-processing?

Utilizza tre metodi: 1) Morsetto con ventose a vuoto + cuscinetti a nido d'ape per distribuire la pressione; 2) Utilizzare velocità di taglio basse (50-80M/min per alluminio) per ridurre al minimo la forza; 3) Aggiungere una fase di trattamento criogenico (-196°C per 24 ore) per rilasciare lo stress residuo prima della lavorazione di precisione. Questi riducono la deformazione 60%.

Indice
Scorri fino all'alto