What Are the Key Differences Between Zinc Die Casting and Aluminum Die Casting?

MACCHINAZIONE CNC in lega di zinco

Zinc die casting and aluminum die casting are two of the most widely used metal-forming processes, each dominating distinct niches in manufacturing. While both rely on high pressure to inject molten metal into molds, their differences in material properties, Requisiti di processo, and end-product performance make them suited for entirely different applications—from tiny precision electronics parts to large automotive structural components. But what exactly sets them apart? How do these differences impact cost, efficienza, e qualità in parte? And how do you choose the right process for your project? This article answers these questions with detailed comparisons and actionable insights.

1. Material Basis: Core Properties That Define Performance

The fundamental difference between the two processes lies in their base materials—zinc alloys and aluminum alloys—whose unique traits shape every aspect of die casting. The table below breaks down their key properties:

ProprietĂ  materialeLeghe di zinco (PER ESEMPIO., Carichi 3, Carichi 5)Leghe di alluminio (PER ESEMPIO., ADC12, ADC10)
ComposizioneZinc-based, with added aluminum (3.5–4.3%), rame (0.75–1,25%), and magnesium (0.03–0,08%)Aluminum-based, with silicon (9.5–12%), rame (1.5–3,5%), e ferro (≤1,3%)
Punto di fusioneBasso (380–420°C)Alto (680–720°C)
DensitàAlto (6.6–6.8 g/cm³)Basso (2.7 g/cm³)—1/2.5 that of zinc
Resistenza alla trazioneModerare (280–320 MPA)Più alto (300–350 MPa for heat-treated grades)
DuttilitàEccellente (allungamento: 10–15%)—resists impact without crackingBene (allungamento: 2–5% for non-heat-treated; fino a 10% for heat-treated)
Conducibilità termicaBasso (105–115 W/m·K)Alto (120–150 W/m·K)—better for heat-dissipating parts
Surface Treatment AdaptabilityOutstanding—ideal for electroplating, placcatura cromata, and high-gloss paintingModerate—challenged by porosity; best for anodizing, rivestimento in polvere, or baking paint

2. Parametri di processo: Attrezzatura, Efficienza, and Control

Material properties directly influence process requirements—from the type of die casting machine to production speed and defect risks.

UN. Selezione dell'attrezzatura & Impostare

Process AspectCasting di zinco dadoCasting da morire in alluminio
Tipo di macchinaUsi hot chamber die casting machines—the injection chamber is permanently immersed in molten zinc. This eliminates the need for separate metal feeding steps.Usi cold chamber die casting machines—molten aluminum is poured into a separate injection chamber (to avoid melting the machine components).
Clamping ForceInferiore (50–200 tons)—sufficient for small, parti a pareti sottili.Più alto (200–1,200 tons)—needed to handle high-pressure filling of large, parti complesse.
Materiale della muffaCan use lower-cost H13 steel—low melting point reduces mold wear.Requires heat-resistant mold materials (PER ESEMPIO., H13 steel with nitriding treatment)—high temperatures demand better durability.
Mold Preheating RequirementAlto (150–200 ° C.)—prevents cold isolation defects (molten zinc solidifying too quickly on cold mold surfaces).Moderare (200–250 ° C.)—balances heat retention and rapid solidification for large parts.

B. Efficienza della produzione & Costo

Efficiency MetricCasting di zinco dadoCasting da morire in alluminio
Tempo del cicloVeloce (15–30 seconds per part)—low melting point speeds up solidification.Più lentamente (30–60 secondi per parte)—higher melting point requires longer cooling.
Utilizzo del materialeAlto (90–95%)—minimal scrap from runners and gates (easily recyclable).Moderare (80–85%)—more scrap from porosity defects and larger runners.
Costo per parte (Piccole parti)Inferiore (\(0.1- )0.5 per parte)—fast cycles and low energy use reduce costs.Più alto (\(0.3- )1.0 per parte)—slower cycles and higher energy consumption increase costs.
Energy ConsumptionBasso (30–50 kWh per 100 parti)—no need to reheat metal for each cycle.Alto (80–120 kWh per 100 parti)—requires continuous heating of aluminum to high temperatures.

3. Product Performance: QualitĂ , Durata, and Application Fit

The choice between zinc and aluminum die casting often comes down to the part’s required performance—whether it needs to be lightweight, resistente all'impatto, or visually appealing.

UN. Caratteristiche in parte & Limitazioni

Part TraitCasting di zinco dadoCasting da morire in alluminio
Size RangeIdeal for small parts (0.1–500g)—e.g., electronic connector housings, toy wheels.Suited for large parts (500g–10kg)—e.g., Blocchi di motori automobilistici, Cornici per batterie EV.
Spessore del muroExcels at ultra-thin walls (0.5–2 mm)—low melting point ensures uniform filling.Handles thicker walls (2–10 mm)—better for structural parts but struggles with <1spessore mm.
PrecisioneAlto (tolleranza: ± 0,05 mm)—excellent for parts requiring tight fits (PER ESEMPIO., Guarda i componenti).Bene (tolleranza: ± 0,1 mm)—sufficient for most structural parts but less precise than zinc.
Defect RisksLow—minimal porosity (thanks to low melting point and slow filling). Risks include cold shuts if mold is underheated.Higher—prone to porosity (from turbulent filling) and shrinkage (from high cooling rates). Requires vacuum casting to reduce defects.
Resistenza all'ambienteSuperior—can withstand drops and vibrations (PER ESEMPIO., phone case hinges, door lock mechanisms).Moderate—may crack under heavy impact; better for static load-bearing parts (PER ESEMPIO., parentesi).

B. Scenari applicativi tipici

The table below maps each process to its ideal industry and part types, based on performance needs:

IndustriaApplicazioni di casting di zincoAluminum Die Casting Applications
ElettronicaUSB connector shells- Phone button housings- Laptop hinge components- Sensor casings– Dissipatori di calore (alta conduttivitĂ  termica)- 5G router frames (leggero)- Power adapter enclosures
AutomobileSmall functional parts (door lock mechanisms, wiper linkages)- Rivestimento interno (high-gloss plated parts)- Pin del connettoreEngine blocks and cylinder heads- Cali di trasmissione- Body structural parts (lightweight for EVs)- Battery pack frames
Beni di consumoHigh-end hardware (maniglie del rubinetto, manopole di armadietti)- Toy joints and moving parts- Imballaggio cosmetico (plated finishes)– Elettrodomestici da cucina (basi di frullatore, oven door frames)- Mobili da esterno (resistente alle intemperie)- Luggage frames (leggero e forte)
Aerospaziale & MedicoTiny precision parts (medical device connectors, aircraft instrument knobs)– Parti strutturali leggere (parentesi aerospaziali)- Medical equipment frames (resistente alla corrosione)

4. Selection Strategy: Come scegliere il processo giusto

To avoid costly mistakes, follow this 4-step framework to select between zinc and aluminum die casting:

Fare un passo 1: Definire i requisiti della parte

  • Misurare & Peso: <500g → Zinc; >500g → Aluminum.
  • Weight Priority: Need lightweight (PER ESEMPIO., EV parts) → Aluminum; weight not critical → Zinc.
  • Resistenza all'ambiente: Alto (PER ESEMPIO., handheld devices) → Zinc; Basso (PER ESEMPIO., static brackets) → Aluminum.

Fare un passo 2: Evaluate Surface & Esigenze di precisione

  • High-Gloss/Plated Finish: Necessario (PER ESEMPIO., hardware decorativo) → Zinc; not required → Aluminum.
  • Tolleranza: ±0.05mm or tighter (PER ESEMPIO., elettronica) → Zinc; ±0.1mm acceptable → Aluminum.

Fare un passo 3: Considera il volume di produzione

  • Low-Medium Volume (<100,000 parti): Zinco (lower mold costs and faster setup).
  • Volume elevato (>100,000 parts): Alluminio (cost per part decreases with scale, offsetting higher initial investment).

Fare un passo 4: Calcolare il costo totale di proprietĂ 

  • Zinco: Lower upfront costs (macchina + muffa) but higher material costs (denser, uses more metal per part).
  • Alluminio: Higher upfront costs but lower material costs (piĂą leggero, uses less metal) and better long-term efficiency for large batches.

5. Yigu Technology’s Perspective on Zinc vs. Casting da morire in alluminio

Alla tecnologia Yigu, we see zinc and aluminum die casting as complementary tools—each solving unique customer needs. For electronics clients needing tiny, parti precise (PER ESEMPIO., Connettori USB), our hot chamber zinc die casting lines deliver 99.5% yield rates and cycle times of 18 secondi/parte. For automotive clients requiring large structural components (PER ESEMPIO., battery frames), our cold chamber aluminum lines (equipped with vacuum degassing) reduce porosity to <0.5% and meet IATF 16949 standard.

Stiamo portando avanti due innovazioni chiave: 1) Hybrid mold designs for zinc casting (reducing tooling costs by 30% per piccoli lotti); 2) AI-driven parameter control for aluminum casting (optimizing filling speed to cut defects by 25%). Our goal is to help clients look beyond “cost alone” and choose the process that aligns with their part’s function, durata, and market positioning—delivering value that extends beyond production.

Domande frequenti

  1. Can I use zinc die casting for heat-dissipating parts (PER ESEMPIO., Dissipatori di calore a LED)?

No—zinc’s low thermal conductivity (105 W/m · k) makes it poor at transferring heat. Alluminio (120–150 W/m·K) is far better for heat-dissipating parts. Per esempio, an aluminum LED heat sink keeps temperatures 20–30°C lower than a zinc equivalent.

  1. Is aluminum die casting more expensive than zinc die casting for small parts?

Yes—for parts <500G, aluminum’s slower cycle time (30–60s vs. 15–30s for zinc) and higher energy use increase per-part costs by 30–50%. Tuttavia, if the part needs to be lightweight (PER ESEMPIO., EV electronics), aluminum’s weight savings may offset the higher cost long-term.

  1. Can zinc die casting parts be heat-treated to improve strength?

No—zinc alloys do not respond well to heat treatment; it can cause brittleness or deformation. Leghe di alluminio (PER ESEMPIO., ADC12) can be heat-treated (PER ESEMPIO., T6 process) to increase tensile strength by 15–20%, making them better for load-bearing parts.

Indice
Scorri fino all'alto