Quali sono i difetti più comuni della pressofusione e come risolverli?

lavorazione cnc di poliossimetilene pom

I difetti della pressofusione, dalle imperfezioni superficiali alle crepe interne, costano ai produttori in media il 5-12% del valore di produzione annuale (dati del settore). Questi difetti non solo costringono alla rilavorazione o alla rottamazione, ma compromettono anche le prestazioni delle parti, soprattutto per componenti critici per la sicurezza come sensori automobilistici o staffe aerospaziali. Mentre processi come la pressofusione a camera calda (per leghe bassofondenti) o camera fredda […]

I difetti della pressofusione, dalle imperfezioni superficiali alle crepe interne, costano ai produttori in media il 5-12% del valore di produzione annuale (dati del settore). Questi difetti non solo costringono alla rilavorazione o alla rottamazione, ma compromettono anche le prestazioni delle parti, soprattutto per componenti critici per la sicurezza come sensori automobilistici o staffe aerospaziali. Mentre processi come la pressofusione a camera calda (per leghe bassofondenti) or cold chamber die casting (for high-melting metals) have unique defect risks, most issues stem from shared pain points: mold design flaws, parameter mismatches, or material inconsistencies. But what do these common defects look like? What causes them? And how can you fix or prevent them? This article answers these questions with detailed classifications, esempi del mondo reale, and actionable solutions.

1. Classification of Common Die Casting Defects: 5 Core Categories

Die casting defects are grouped by their location (surface vs. interno) and root cause. The table below breaks down 5 key categories, with defect characteristics, high-incidence areas, and visual cues:

Defect CategorySpecific DefectKey CharacteristicsHigh-Incidence AreasDetection Method
Filling DefectsUndercastingMetal liquid fails to fill the cavity; incomplete part shape or cavities.End of castings, narrow deep cavities (per esempio., USB connector slots).Ispezione visiva; misurazione dimensionale (part shorter than design).
Cold SeparationLow-temperature metal flows dock but don’t fuse; irregular linear gaps (may penetrate); often with flow marks or surface bubbles.Thick-thin wall transitions (per esempio., alloggiamenti per sensori automobilistici).Ispezione visiva; ultrasonic testing (UT) for hidden gaps.
Flow MarksFirst-entering metal forms a thin layer; covered by subsequent metal, leaving flow-direction traces; partial sunken feel.Large flat surfaces (per esempio., laptop hinge bases); near gates.Ispezione visiva; touch test (detects slight depressions).
Surface Damage DefectsAbrasion (Strain)Surface scars from metal adhesion or insufficient mold draft; severe cases have cracks.Mold release direction (per esempio., cylindrical part edges).Ispezione visiva; magnifying glass (10×) for fine scars.
PockmarksSmall pockmark-like areas; rough surface texture.Caused by low mold/alloy temperature during filling.Ispezione visiva; surface roughness tester (Ra >6.3μm indicates defects).
Mesh BurrsMesh-shaped bulges and metal burrs; caused by mold thermal fatigue.Mold parting surfaces (per esempio., zinc alloy faucet handles).Ispezione visiva; edge feel (detects sharp burrs).
Abnormal Shape DefectsDepression (Restringimento)Concave areas on smooth surfaces; often with dimples.Thick-walled areas or wall thickness transitions (per esempio., battery terminal bases).Ispezione visiva; scansione laser (measures surface flatness).
Deformation (Warping)Overall/partial geometry mismatch with design; per esempio., bent brackets.Thin-walled parts (per esempio., Dissipatori di calore per LED); large flat components.Dimensional testing (per esempio., calipers for bending angle); CMM (Macchina di misura a coordinate).
Wrong Edge (Mismatch)Relative displacement on both sides of the parting surface; step-like gaps.Mold split lines (per esempio., toy car bodies).Ispezione visiva; feel test (detects step differences).
Internal Quality DefectsRestringimento & LooseningHoles or loose tissue from solidification contraction; bassa densità.Thick-walled cores (per esempio., engine block ribs); wall thickness changes.X-ray flaw detection; test di densità (lower than material standard).
BubblesGas accumulation under the epidermis; bulging bubbles (may penetrate or be closed); easy to crack when stressed.Near mold vents (per esempio., 3C part inner cavities).X-ray testing; trattamento termico (bubbles expand and become visible).
CracksFilamentous gaps; cold cracks (no oxidation, fragile) or hot cracks (oxidized edges, duttile).High-stress areas (per esempio., part corners); dopo il trattamento termico.UT testing; dye penetrant inspection (DPI) for surface cracks.
Other DefectsFlash (Fluff)Excess metal flakes on edges or splices; thin and brittle.Mold parting surfaces, insert gaps (per esempio., bathroom hardware joints).Ispezione visiva; edge trimming (removes excess material).
ImprintingUneven marks from pusher/insert splicing; per esempio., circular dents from ejector pins.Pusher contact areas (per esempio., part bottoms).Ispezione visiva; touch test (detects unevenness).
Colored SpotsHeterochromatic spots (per esempio., nero, marrone); caused by paint carbides or punch oil.Surface of decorative parts (per esempio., zinc alloy toy casings).Ispezione visiva; solvent wiping (tests if spots are removable).
Stratificazione (Clamping)Obvious metal layers inside the part; thick flash on parting surfaces.Caused by multiple metal flow layers not fusing.Sectioning inspection; X-ray testing (shows layer boundaries).

2. Root Causes: Why Defects Happen (3 Key Links)

Most die casting defects trace back to failures in progettazione di stampi, parametri di processo, or material quality. Below is a detailed breakdown of causes for high-frequency defects:

UN. Mold Design Flaws (30–40% of Defects)

Mold issues create inherent risks for filling, superficie, and shape defects:

  • Insufficient Draft Angle: Draft <1° (for zinc alloys) causes metal adhesion, leading to abrasion (strain) e deformazione.
  • Poor Gate/Exhaust Design: Small gate size (per esempio., <1mm for thin parts) slows filling, causing undercasting; blocked exhaust grooves (profondità <0.2mm) trap gas, portando alle bolle.
  • Uneven Cooling Channels: Cooling channel spacing >20mm creates temperature gradients (>30°C), causing cold separation and shrinkage depressions.
  • Thermal Fatigue: Mold used >100,000 shots without maintenance develops cracks, leading to mesh burrs and layering.

B. Process Parameter Mismatches (40–50% of Defects)

Incorrect settings during casting amplify defect risks—especially for filling and internal defects:

DefectKey Parameter CauseQuantitative Thresholds (Leghe di zinco)
UndercastingLow injection pressure/speed; low alloy temperature.Pressione <5MPa; velocità <0.5SM; temperatura <380°C.
Cold SeparationSlow filling speed; large temperature drop between metal and mold.Velocità <0.8SM; temperatura dello stampo <150°C (alloy temp 400°C).
BubblesHigh injection speed (turbulence); insufficient holding pressure.Velocità >2SM; holding pressure <8MPa.
Shrinkage DepressionShort holding time; low holding pressure.Holding time <5S; pressione <10MPa.
DeformationUneven cooling time; mold opening too early.Tempo di raffreddamento <3S (parti sottili); mold opening <2s after solidification.

C. Material Quality Issues (10–20% of Defects)

Impure or unstable materials introduce internal and surface defects:

  • Alloy Impurities: Iron content >1.2% (leghe di zinco) causes hard particles, leading to pockmarks and cracks.
  • Moisture/Gas Content: Hydrogen content >0.3cc/100g (leghe di alluminio) creates bubbles during solidification.
  • Oxide Slag: Unfiltered molten metal (slag content >0.5%) causes layering and shrinkage loosening.

3. Solution Framework: Fix & Prevent Defects

Resolving die casting defects requires targeted fixes for root causes—follow this 3-step approach for long-term results:

UN. Targeted Fixes for High-Frequency Defects

For common defects, use these proven solutions tailored to cause and defect type:

DefectImmediate FixLong-Term Prevention
UndercastingIncrease injection pressure (by 2–5MPa) or speed (by 0.2–0.5m/s); raise alloy temperature (by 10–15°C).Optimize gate size (match to part thickness: gate width = 2× part thickness); clean exhaust grooves weekly.
Cold SeparationPreheat mold to 180–200°C (leghe di zinco); increase alloy temperature (by 15–20°C); use a larger gate.Add diversion ribs (angle ≤10°) to guide uniform flow; install mold temperature controllers (±5°C tolerance).
BubblesReduce injection speed (by 0.3–0.5m/s); extend holding time (by 2–3s); add vacuum exhaust (vacuum degree ≥90kPa).Use inert gas protection (argon/nitrogen) during melting; filter molten metal with 20-ppi ceramic foam filters.
Shrinkage DepressionIncrease holding pressure (by 3–5MPa); extend holding time (by 3–5s); add local cooling channels (near thick walls).Optimize part design (reduce wall thickness difference to ≤2:1); use risers for thick-walled areas.
Abrasion (Strain)Polish mold cavity (Ra ≤1.6μm); increase draft angle to 1.5–2°; apply mold release agent (magro, uniform layer).Use wear-resistant mold materials (per esempio., H13 steel for hot chamber dies); coat cavity with TiN (nitruro di titanio) for zinc alloys.

B. Mold Optimization: Build Defect-Resistant Designs

  • Draft Angle: Ensure minimum draft of 1° for zinc alloys, 2° for aluminum alloys (prevents abrasion).
  • Exhaust System: Add exhaust grooves (depth 0.1–0.2mm, width 5–10mm) at final filling zones; per parti complesse, use vent pins (diameter 0.5–1mm).
  • Cooling Channels: Space channels 15–20mm apart; align with thick-walled areas (per esempio., 5mm from 10mm-thick walls) to reduce temperature gradients.
  • Gate Design: Use fan gates for large flat parts (ensures uniform filling); use pinpoint gates (diameter 0.8–1.2mm) for small 3C components.

C. Controllo del processo: Stabilize Parameters

  • Controllo della temperatura:
  • Alloy temperature: 380–420°C (leghe di zinco), 680–720°C (leghe di alluminio); use a digital thermostat (±5°C tolerance).
  • Temperatura dello stampo: 150–200°C (leghe di zinco), 200–250°C (leghe di alluminio); monitor with infrared thermal imagers.
  • Parametri di iniezione:
  • Pressofusione a camera calda (zinco): Pressure 10–20MPa, speed 0.5–1.5m/s.
  • Cold chamber die casting (alluminio): Pressure 30–80MPa, speed 2–5m/s.
  • Controlli di qualità:
  • First-part inspection: Controlla le dimensioni, superficie, and internal quality (X-ray for critical parts) at the start of each shift.
  • Controllo statistico del processo (SPC): Track parameters (temperatura, pressione) and defect rates; set control limits (per esempio., ±10% for pressure).

4. Yigu Technology’s Perspective on Common Die Casting Defects

Alla tecnologia Yigu, we view defects not as failures, but as opportunities to optimize processes. For hot chamber die casting clients (zinc alloy 3C parts), our AI-driven parameter control system—combining real-time temperature monitoring and adaptive pressure adjustment—reduced filling defects (undercasting, cold separation) da 8% A <1.5%. For cold chamber clients (aluminum automotive parts), our vacuum-assisted exhaust and ceramic foam filtration cut bubble and shrinkage rates by 60%.

We’re advancing two key solutions: 1) Digital twin simulation (MAGMA software) to predict filling defects before mold production; 2) Wear-resistant mold coatings (TiAlN) that extend mold life by 50%, reducing mesh burrs. Our goal is to help manufacturers shift from “defect repair” to “defect prevention”—cutting scrap rates to <2% and boosting production efficiency by 15%.

Domande frequenti

  1. Can surface defects like flow marks or pockmarks be repaired after casting?

Yes—minor flow marks can be removed by mechanical polishing (800–1200-grit sandpaper) or chemical etching (for aluminum alloys). Pockmarks may require putty filling (per le parti non critiche), but severe cases need scrapping. We recommend fixing root causes (per esempio., adjusting injection speed) instead of relying on post-repair.

  1. Why do internal defects like bubbles or shrinkage often go undetected until later?

Internal defects are hidden under the surface—they may only appear after heat treatment (bubbles expand) or stress testing (cracks form). To detect them early, use X-ray flaw detection for critical parts (per esempio., sensori automobilistici) and density testing (ensure ≥99.5% density for aluminum alloys).

  1. Do common defects differ between hot chamber and cold chamber die casting?

Yes—hot chamber (zinco) is prone to surface defects (abrasione, butterati) due to mold adhesion and low pressure; cold chamber (alluminio) faces more internal defects (bolle, restringimento) due to high-temperature metal and turbulent filling. Our solutions are tailored: for hot chamber, we optimize draft and mold release; for cold chamber, we focus on vacuum and filtration.

Indice
Scorri fino all'inizio