What Is CNC Machining Process for a Mixer Prototype Model? Una guida passo-passo

MACCHINAZIONE CNC medica

Developing a mixer prototype model requires a precise CNC machining process to validate design rationality, test component fit (PER ESEMPIO., blade assembly, transmission structures), and evaluate user-centric details (PER ESEMPIO., non-slip base, button responsiveness). Unlike simple appliances, mixers have compact, high-functionality structures—from curved stirring 刀组 (knife sets) to transparent mixing cups—that demand tailored machining strategies. This guide breaks down the full workflow, from preliminary design to final assembly, with key parameters, selezioni dei materiali, e consigli pratici per garantire il successo del prototipo.

1. Preparazione preliminare: Gettare le basi per la lavorazione

The success of CNC machining starts with thorough preparation, including 3D modeling, Selezione del materiale, and equipment/tool readiness. This stage avoids rework and ensures alignment with design goals.

(1) 3D Modellazione: Define Mixer Structure with Precision

Usa il software CAD professionale (PER ESEMPIO., Solidworks, E, ProE) to create a detailed 3D model covering all critical components. The model must balance aesthetic design, functional logic, and machining feasibility.

Component CategoryKey Design DetailsRequisiti di precisioneScopo
Main Body (Shell)Streamlined contour, non-slip base (groove depth 2mm), button mounting holes (Φ8mm)Shell dimensional error ±0.2mm; hole position tolerance ±0.1mmEnsure structural stability; fit control buttons and motor components
Mixing Cup (Trasparente)Inner cavity volume (PER ESEMPIO., 600mL), feeding port (Φ60mm), discharge outlet (Φ20mm)Cavity roundness error ≤0.1mm; wall thickness uniformity ±0.05mmEnsure smooth material mixing; avoid leakage at connections
Knife Set & Tool HolderBlade curve (radius 5mm), mounting slot (depth 6mm), gear cavity (for POM gears)Slot depth tolerance ±0.05mm; gear cavity clearance 0.1mmFit rotating components; ensure smooth blade operation

Suggerimenti per l'ottimizzazione del modello:

  • Component Splitting: Split integrated structures (PER ESEMPIO., cup body + coperchio) into independent parts to avoid tool interference. Per esempio, machine the mixing cup and its lid separately, then assemble with a sealing ring.
  • Process Marking: Label critical features (PER ESEMPIO., “polish inner wall of mixing cup”) and reference datums (PER ESEMPIO., base bottom as origin) to guide CNC programming.
  • Interference Check: Use software to simulate blade rotation—ensure 0.5mm clearance between blade and cup wall to prevent friction and material jamming.

(2) Selezione del materiale: Abbina le prestazioni ai ruoli dei componenti

Mixer components have distinct functional needs (trasparenza, resistenza all'usura, forza), so material selection is critical. Below is a detailed comparison of suitable options:

Tipo di materialeApplicable ComponentsProprietà chiaveMachinability Advantages
Plastica addominaliMain shell, base, coperchioElevata resistenza all'impatto (Izod strength 20 KJ /), facile da colorare, basso costoLow tool wear; machinable at 8,000–12,000 rpm (fast and efficient)
Plastica per PCTransparent mixing cup, observation windowElevata trasparenza (light transmittance ≥88%), resistente all'impatto (10x più forte del vetro)Precision cutting achievable; minimal edge chipping (≤0,1 mm)
Pom (Poliossimetilene)Marcia, tool holder (parti resistenti all'usura)Basso coefficiente di attrito (0.15), Elevata resistenza all'usura, stabilità dimensionale buonaNo deformation during machining; suitable for small transmission parts
Lega di alluminio (6061)Motor brackets, metal decorative partsAlta rigidità (resistenza alla trazione 276 MPA), resistente alla corrosioneFast cutting speed; surface can be anodized for enhanced texture
Acciaio inossidabile (304)Simulation knife shafts (opzionale)Alta resistenza, resistente alla corrosione, resistente all'usuraSuitable for high-precision cutting; maintains shape under stress

Preparazione del materiale grezzo:

  • Cut blanks with 5–10mm machining allowance on all sides to accommodate roughing and finishing:
  • A PC mixing cup (Dimensione finale: Φ90mm×150mm) needs a Φ100mm×160mm blank.
  • An ABS main shell (220mm×160mm×90mm) requires a 230mm×170mm×100mm blank.

(3) Attrezzatura & Preparazione degli strumenti: Garantire la precisione della lavorazione

Select CNC equipment and tools based on component complexity and material properties to avoid defects like tool marks or dimensional deviations.

Equipment/Tool TypeSelection CriteriaRecommended Specifications
CNC Machining Center3-axis for flat parts; 5-axis for curved surfaces (PER ESEMPIO., blade curves)Positioning accuracy ±0.005mm; spindle speed range 8,000–24,000 rpm
FresateSolid carbide for plastics; acciaio ad alta velocità (HSS) per metallo– Ruvido: Φ8–Φ12mm flat-bottom mills (fast material removal)- Finitura: Φ2–Φ6mm ball-head mills (superfici curve); Φ0.5–2mm small mills (logo/buttons)
Special ToolsTaper cutters (chamfering cup edges); diamond polishers (PC transparency)Taper angle 45°; diamond polisher grit 1,200# (for PC surface refinement)
InfissiVacuum suction cups (flat ABS/PC parts); precision vises (Componenti metallici)Vacuum pressure ≥0.8 MPa; vise clamping force ≥3 kN (prevents workpiece displacement)

2. Esecuzione di lavorazione a CNC: From Blank to Prototype Components

This stage divides machining into roughing and finishing to balance efficiency and precision—critical for mixer components with diverse structures.

(1) Macchinatura ruvida: Shape the Foundation

Roughing removes most excess material to bring the blank close to the final shape, prioritizing speed while avoiding tool damage.

Tipo di componenteRoughing FocusOperazioni chiave & Parametri
ABS Main ShellMachine outer contour, base grooves, button holesUse Φ10mm flat-bottom mill; velocità di taglio 10,000 RPM, velocità di alimentazione 1,200 mm/min; layer depth 3mm
PC Mixing CupMill outer wall and inner cavity; pre-drill feeding/discharge outletsUse Φ8mm end mill; velocità di taglio 9,000 RPM, velocità di alimentazione 800 mm/min; retain 0.5mm finishing allowance
POM Gear CavityMachine cavity outline and mounting holesUse Φ6mm end mill; velocità di taglio 8,000 RPM, velocità di alimentazione 600 mm/min; Evita il surriscaldamento (POM melts at 160°C)

Post-Roughing Inspection:

  • Use a digital caliper to check key dimensions (PER ESEMPIO., mixing cup diameter, shell height) and ensure they are within ±0.5mm of the design value.
  • Clean chips with compressed air—especially critical for PC parts (chips left on surfaces cause scratches during finishing).

(2) Finitura: Ottieni precisione & Qualità della superficie

Finishing refines components to meet final design requirements, focusing on transparency (PC), smoothness (Addominali), precisione dimensionale (POM/metal).

Tipo di componenteFinishing FocusOperazioni chiave & Parametri
PC Mixing CupPolish inner/outer walls (trasparenza); chamfer edges (prevent sharpness)Use Φ4mm ball-head mill (inner wall); velocità di taglio 15,000 RPM, velocità di alimentazione 500 mm/min; then diamond polish (light transmittance ≥85%)
ABS Main ShellSmooth shell surface; engrave logo/button labels (depth 0.3mm)Use Φ2mm ball-head mill; velocità di taglio 12,000 RPM, velocità di alimentazione 700 mm/min; surface roughness Ra ≤0.8μm
POM Gear CavityRefine cavity walls; ensure gear clearance (0.1mm)Use Φ3mm end mill; velocità di taglio 9,000 RPM, velocità di alimentazione 500 mm/min; tolleranza dimensionale ± 0,05 mm
Aluminum Motor BracketSmooth mounting surfaces; drill precision holes (Φ5mm)Use Φ5mm twist drill; velocità di taglio 18,000 RPM, velocità di alimentazione 1,000 mm/min; hole roundness error ≤0.02mm

Finishing Quality Checks:

  • For PC parts: Use a spectrophotometer to verify transparency (≥85%) and a surface roughness tester to confirm Ra ≤0.4μm.
  • For POM gear cavities: Use a feeler gauge to check clearance (0.1mm) and ensure gears rotate smoothly without jamming.

3. Post-elaborazione: Migliora l'estetica & Funzionalità

Post-processing bridges the gap between machined components and a realistic mixer prototype, focusing on surface refinement and assembly readiness.

(1) Trattamento superficiale: Sarto al materiale & Component Role

Material/ComponentSurface Treatment StepsRisultato atteso
ABS Main Shell1. Sand with 400#→800#→1200# sandpaper (remove tool marks)2. Degrease with isopropyl alcohol3. Spray matte/gloss paint (50μm thickness)Paint adhesion ≥4B (Nessun peeling); surface gloss 30–70 GU (per disegno)
PC Mixing Cup1. Lucidatura del diamante (1,200#→2,000# grit)2. Clean with lens cleaner3. Apply anti-scratch coatingNessun graffio visibile; anti-scratch level ≥3H (pencil test)
Aluminum Brackets1. Degrease with alkaline cleaner2. Anodize (silver-gray, 8–10μm film)3. Sandblast (finitura opaca)Resistenza alla corrosione: No rust after 48-hour salt spray test; friction coefficient ≤0.15
POM Gear PartsNo additional treatment (naturally smooth surface)Friction coefficient remains 0.15; no wear after 1,000 rotation tests

(2) Assemblaggio & Functional Debugging

Proper assembly ensures components work together seamlessly, while functional tests validate the prototype’s usability.

Passi di montaggio:

  1. Pre-Assembly Check: Verify all parts meet dimensional requirements (PER ESEMPIO., mixing cup fits shell with 0.5mm clearance).
  2. Component Fixing:
  • Bond PC mixing cup to ABS shell with food-grade adhesive (ensure no leakage).
  • Screw aluminum motor brackets to the base (coppia 5 N · m, avoid thread damage).
  • Install POM gears and 3D-printed resin simulation blades (replace real metal blades for safety).
  1. Prova di tenuta: Pour 300mL water into the mixing cup—check for leakage at connections (no water seepage within 10 minuti).

Functional Debugging:

  • Button Operation: Test switch/pulse buttons 100 times—stroke 2mm ±0.2mm, feedback force 5–8N (comfortable for users).
  • Blade Rotation: Simulate mixing with a motor (600 RPM)—ensure blade rotates smoothly, no friction with cup wall.
  • Flusso di materiale: Pour simulated ingredients (PER ESEMPIO., acqua + flour mixture) through the feeding port—check flow rate (≥80mL/min) and no residue in the cup.

4. Controllo di qualità & Ottimizzazione del processo

Strict quality control ensures the prototype meets design standards, while optimization reduces costs for future iterations.

(1) Key Quality Control Standards

Control ItemAcceptance CriteriaInspection Method
Precisione dimensionaleMixing cup: ± 0,1 mm- Shell: ± 0,2 mm- Gear cavity: ± 0,05 mmCMM (critical components); calibro digitale (parti generali)
Qualità della superficie– PC: Ra ≤0.4μm, transparency ≥85%- Addominali: RA ≤0,8μm, Nessun segno di strumentoTester di rugosità superficiale; spectrophotometer; ispezione visiva (500lux light)
Functional PerformanceNo leakage (10-minute water test)- Blade rotation: 600 rpm ±50 rpmWater leakage test; tachometer (blade speed)

(2) Process Optimization Tips

  1. Material Saving: Design hollow structures for ABS parts (PER ESEMPIO., base with 3mm thick walls) to reduce blank size—saves 20–30% material cost.
  2. Efficienza di lavorazione: Combine roughing and semi-finishing for simple parts (PER ESEMPIO., decorative strips) to cut tool change time by 15%.
  3. Post-Processing Simplification: Per parti nascoste (PER ESEMPIO., motor brackets), skip anodizing—use natural aluminum finish to save 10–15% of treatment cost.

Yigu Technology’s Perspective on CNC Machining Mixer Prototype Models

Alla tecnologia Yigu, Crediamo functional precision and cost balance are the core of mixer prototype machining. Many clients overcomplicate processes—for example, using 5-axis machines for flat ABS shells when 3-axis works, or over-polishing hidden POM parts. Our team optimizes for both quality and efficiency: We use PC with diamond polishing for mixing cups (ensuring transparency ≥85%) and 3-axis machines for most components to cut 20% of machining time. We also simplify blade simulation (3D-printed resin instead of metal) for safety and cost. For batch prototypes, we use multi-cavity fixtures to machine 2–3 mixing cups at once, Ridurre i tempi di produzione di 30%. Our goal is to deliver prototypes that validate design and user needs at the lowest cost.

Domande frequenti

  1. Why is POM preferred for mixer gear components instead of ABS?

POM has a lower friction coefficient (0.15 contro. 0.3 per addominali) and higher wear resistance, making it ideal for transmission gears that require smooth rotation and long-term use. ABS is prone to wear and deformation under repeated friction, which would cause gear jamming in mixers.

  1. How to prevent PC mixing cups from scratching during CNC machining?

We take three key steps: 1) Usa Sharp, high-quality solid carbide tools to minimize cutting force; 2) Apply a protective film to the cup surface before machining; 3) Clean chips with compressed air (not cloth) to avoid abrasive scratches. These measures keep the PC surface scratch-free.

  1. What is the total time required to machine a single mixer prototype?

Total time is ~4–7 days: 1 day for 3D modeling/material prep, 1–2 giorni per lavorazione CNC (ruvido + finitura), 1–2 giorni per la post-elaborazione (polishing/painting), and 1–2 days for assembly/debugging. Produzione in lotti (10+ prototipi) can be shortened to 3–5 days with parallel processing.

Indice
Scorri fino all'alto