Developing a mixer prototype model requires a precise CNC machining process to validate design rationality, test component fit (PER ESEMPIO., blade assembly, transmission structures), and evaluate user-centric details (PER ESEMPIO., non-slip base, button responsiveness). Unlike simple appliances, mixers have compact, high-functionality structures—from curved stirring 刀组 (knife sets) to transparent mixing cups—that demand tailored machining strategies. This guide breaks down the full workflow, from preliminary design to final assembly, with key parameters, selezioni dei materiali, e consigli pratici per garantire il successo del prototipo.
1. Preparazione preliminare: Gettare le basi per la lavorazione
The success of CNC machining starts with thorough preparation, including 3D modeling, Selezione del materiale, and equipment/tool readiness. This stage avoids rework and ensures alignment with design goals.
(1) 3D Modellazione: Define Mixer Structure with Precision
Usa il software CAD professionale (PER ESEMPIO., Solidworks, E, ProE) to create a detailed 3D model covering all critical components. The model must balance aesthetic design, functional logic, and machining feasibility.
Component Category | Key Design Details | Requisiti di precisione | Scopo |
Main Body (Shell) | Streamlined contour, non-slip base (groove depth 2mm), button mounting holes (Φ8mm) | Shell dimensional error ±0.2mm; hole position tolerance ±0.1mm | Ensure structural stability; fit control buttons and motor components |
Mixing Cup (Trasparente) | Inner cavity volume (PER ESEMPIO., 600mL), feeding port (Φ60mm), discharge outlet (Φ20mm) | Cavity roundness error ≤0.1mm; wall thickness uniformity ±0.05mm | Ensure smooth material mixing; avoid leakage at connections |
Knife Set & Tool Holder | Blade curve (radius 5mm), mounting slot (depth 6mm), gear cavity (for POM gears) | Slot depth tolerance ±0.05mm; gear cavity clearance 0.1mm | Fit rotating components; ensure smooth blade operation |
Suggerimenti per l'ottimizzazione del modello:
- Component Splitting: Split integrated structures (PER ESEMPIO., cup body + coperchio) into independent parts to avoid tool interference. Per esempio, machine the mixing cup and its lid separately, then assemble with a sealing ring.
- Process Marking: Label critical features (PER ESEMPIO., “polish inner wall of mixing cup”) and reference datums (PER ESEMPIO., base bottom as origin) to guide CNC programming.
- Interference Check: Use software to simulate blade rotation—ensure 0.5mm clearance between blade and cup wall to prevent friction and material jamming.
(2) Selezione del materiale: Abbina le prestazioni ai ruoli dei componenti
Mixer components have distinct functional needs (trasparenza, resistenza all'usura, forza), so material selection is critical. Below is a detailed comparison of suitable options:
Tipo di materiale | Applicable Components | Proprietà chiave | Machinability Advantages |
Plastica addominali | Main shell, base, coperchio | Elevata resistenza all'impatto (Izod strength 20 KJ /), facile da colorare, basso costo | Low tool wear; machinable at 8,000–12,000 rpm (fast and efficient) |
Plastica per PC | Transparent mixing cup, observation window | Elevata trasparenza (light transmittance ≥88%), resistente all'impatto (10x più forte del vetro) | Precision cutting achievable; minimal edge chipping (≤0,1 mm) |
Pom (Poliossimetilene) | Marcia, tool holder (parti resistenti all'usura) | Basso coefficiente di attrito (0.15), Elevata resistenza all'usura, stabilità dimensionale buona | No deformation during machining; suitable for small transmission parts |
Lega di alluminio (6061) | Motor brackets, metal decorative parts | Alta rigidità (resistenza alla trazione 276 MPA), resistente alla corrosione | Fast cutting speed; surface can be anodized for enhanced texture |
Acciaio inossidabile (304) | Simulation knife shafts (opzionale) | Alta resistenza, resistente alla corrosione, resistente all'usura | Suitable for high-precision cutting; maintains shape under stress |
Preparazione del materiale grezzo:
- Cut blanks with 5–10mm machining allowance on all sides to accommodate roughing and finishing:
- A PC mixing cup (Dimensione finale: Φ90mm×150mm) needs a Φ100mm×160mm blank.
- An ABS main shell (220mm×160mm×90mm) requires a 230mm×170mm×100mm blank.
(3) Attrezzatura & Preparazione degli strumenti: Garantire la precisione della lavorazione
Select CNC equipment and tools based on component complexity and material properties to avoid defects like tool marks or dimensional deviations.
Equipment/Tool Type | Selection Criteria | Recommended Specifications |
CNC Machining Center | 3-axis for flat parts; 5-axis for curved surfaces (PER ESEMPIO., blade curves) | Positioning accuracy ±0.005mm; spindle speed range 8,000–24,000 rpm |
Fresate | Solid carbide for plastics; acciaio ad alta velocità (HSS) per metallo | – Ruvido: Φ8–Φ12mm flat-bottom mills (fast material removal)- Finitura: Φ2–Φ6mm ball-head mills (superfici curve); Φ0.5–2mm small mills (logo/buttons) |
Special Tools | Taper cutters (chamfering cup edges); diamond polishers (PC transparency) | Taper angle 45°; diamond polisher grit 1,200# (for PC surface refinement) |
Infissi | Vacuum suction cups (flat ABS/PC parts); precision vises (Componenti metallici) | Vacuum pressure ≥0.8 MPa; vise clamping force ≥3 kN (prevents workpiece displacement) |
2. Esecuzione di lavorazione a CNC: From Blank to Prototype Components
This stage divides machining into roughing and finishing to balance efficiency and precision—critical for mixer components with diverse structures.
(1) Macchinatura ruvida: Shape the Foundation
Roughing removes most excess material to bring the blank close to the final shape, prioritizing speed while avoiding tool damage.
Tipo di componente | Roughing Focus | Operazioni chiave & Parametri |
ABS Main Shell | Machine outer contour, base grooves, button holes | Use Φ10mm flat-bottom mill; velocità di taglio 10,000 RPM, velocità di alimentazione 1,200 mm/min; layer depth 3mm |
PC Mixing Cup | Mill outer wall and inner cavity; pre-drill feeding/discharge outlets | Use Φ8mm end mill; velocità di taglio 9,000 RPM, velocità di alimentazione 800 mm/min; retain 0.5mm finishing allowance |
POM Gear Cavity | Machine cavity outline and mounting holes | Use Φ6mm end mill; velocità di taglio 8,000 RPM, velocità di alimentazione 600 mm/min; Evita il surriscaldamento (POM melts at 160°C) |
Post-Roughing Inspection:
- Use a digital caliper to check key dimensions (PER ESEMPIO., mixing cup diameter, shell height) and ensure they are within ±0.5mm of the design value.
- Clean chips with compressed air—especially critical for PC parts (chips left on surfaces cause scratches during finishing).
(2) Finitura: Ottieni precisione & Qualità della superficie
Finishing refines components to meet final design requirements, focusing on transparency (PC), smoothness (Addominali), precisione dimensionale (POM/metal).
Tipo di componente | Finishing Focus | Operazioni chiave & Parametri |
PC Mixing Cup | Polish inner/outer walls (trasparenza); chamfer edges (prevent sharpness) | Use Φ4mm ball-head mill (inner wall); velocità di taglio 15,000 RPM, velocità di alimentazione 500 mm/min; then diamond polish (light transmittance ≥85%) |
ABS Main Shell | Smooth shell surface; engrave logo/button labels (depth 0.3mm) | Use Φ2mm ball-head mill; velocità di taglio 12,000 RPM, velocità di alimentazione 700 mm/min; surface roughness Ra ≤0.8μm |
POM Gear Cavity | Refine cavity walls; ensure gear clearance (0.1mm) | Use Φ3mm end mill; velocità di taglio 9,000 RPM, velocità di alimentazione 500 mm/min; tolleranza dimensionale ± 0,05 mm |
Aluminum Motor Bracket | Smooth mounting surfaces; drill precision holes (Φ5mm) | Use Φ5mm twist drill; velocità di taglio 18,000 RPM, velocità di alimentazione 1,000 mm/min; hole roundness error ≤0.02mm |
Finishing Quality Checks:
- For PC parts: Use a spectrophotometer to verify transparency (≥85%) and a surface roughness tester to confirm Ra ≤0.4μm.
- For POM gear cavities: Use a feeler gauge to check clearance (0.1mm) and ensure gears rotate smoothly without jamming.
3. Post-elaborazione: Migliora l'estetica & Funzionalità
Post-processing bridges the gap between machined components and a realistic mixer prototype, focusing on surface refinement and assembly readiness.
(1) Trattamento superficiale: Sarto al materiale & Component Role
Material/Component | Surface Treatment Steps | Risultato atteso |
ABS Main Shell | 1. Sand with 400#→800#→1200# sandpaper (remove tool marks)2. Degrease with isopropyl alcohol3. Spray matte/gloss paint (50μm thickness) | Paint adhesion ≥4B (Nessun peeling); surface gloss 30–70 GU (per disegno) |
PC Mixing Cup | 1. Lucidatura del diamante (1,200#→2,000# grit)2. Clean with lens cleaner3. Apply anti-scratch coating | Nessun graffio visibile; anti-scratch level ≥3H (pencil test) |
Aluminum Brackets | 1. Degrease with alkaline cleaner2. Anodize (silver-gray, 8–10μm film)3. Sandblast (finitura opaca) | Resistenza alla corrosione: No rust after 48-hour salt spray test; friction coefficient ≤0.15 |
POM Gear Parts | No additional treatment (naturally smooth surface) | Friction coefficient remains 0.15; no wear after 1,000 rotation tests |
(2) Assemblaggio & Functional Debugging
Proper assembly ensures components work together seamlessly, while functional tests validate the prototype’s usability.
Passi di montaggio:
- Pre-Assembly Check: Verify all parts meet dimensional requirements (PER ESEMPIO., mixing cup fits shell with 0.5mm clearance).
- Component Fixing:
- Bond PC mixing cup to ABS shell with food-grade adhesive (ensure no leakage).
- Screw aluminum motor brackets to the base (coppia 5 N · m, avoid thread damage).
- Install POM gears and 3D-printed resin simulation blades (replace real metal blades for safety).
- Prova di tenuta: Pour 300mL water into the mixing cup—check for leakage at connections (no water seepage within 10 minuti).
Functional Debugging:
- Button Operation: Test switch/pulse buttons 100 times—stroke 2mm ±0.2mm, feedback force 5–8N (comfortable for users).
- Blade Rotation: Simulate mixing with a motor (600 RPM)—ensure blade rotates smoothly, no friction with cup wall.
- Flusso di materiale: Pour simulated ingredients (PER ESEMPIO., acqua + flour mixture) through the feeding port—check flow rate (≥80mL/min) and no residue in the cup.
4. Controllo di qualità & Ottimizzazione del processo
Strict quality control ensures the prototype meets design standards, while optimization reduces costs for future iterations.
(1) Key Quality Control Standards
Control Item | Acceptance Criteria | Inspection Method |
Precisione dimensionale | – Mixing cup: ± 0,1 mm- Shell: ± 0,2 mm- Gear cavity: ± 0,05 mm | CMM (critical components); calibro digitale (parti generali) |
Qualità della superficie | – PC: Ra ≤0.4μm, transparency ≥85%- Addominali: RA ≤0,8μm, Nessun segno di strumento | Tester di rugosità superficiale; spectrophotometer; ispezione visiva (500lux light) |
Functional Performance | – No leakage (10-minute water test)- Blade rotation: 600 rpm ±50 rpm | Water leakage test; tachometer (blade speed) |
(2) Process Optimization Tips
- Material Saving: Design hollow structures for ABS parts (PER ESEMPIO., base with 3mm thick walls) to reduce blank size—saves 20–30% material cost.
- Efficienza di lavorazione: Combine roughing and semi-finishing for simple parts (PER ESEMPIO., decorative strips) to cut tool change time by 15%.
- Post-Processing Simplification: Per parti nascoste (PER ESEMPIO., motor brackets), skip anodizing—use natural aluminum finish to save 10–15% of treatment cost.
Yigu Technology’s Perspective on CNC Machining Mixer Prototype Models
Alla tecnologia Yigu, Crediamo functional precision and cost balance are the core of mixer prototype machining. Many clients overcomplicate processes—for example, using 5-axis machines for flat ABS shells when 3-axis works, or over-polishing hidden POM parts. Our team optimizes for both quality and efficiency: We use PC with diamond polishing for mixing cups (ensuring transparency ≥85%) and 3-axis machines for most components to cut 20% of machining time. We also simplify blade simulation (3D-printed resin instead of metal) for safety and cost. For batch prototypes, we use multi-cavity fixtures to machine 2–3 mixing cups at once, Ridurre i tempi di produzione di 30%. Our goal is to deliver prototypes that validate design and user needs at the lowest cost.
Domande frequenti
- Why is POM preferred for mixer gear components instead of ABS?
POM has a lower friction coefficient (0.15 contro. 0.3 per addominali) and higher wear resistance, making it ideal for transmission gears that require smooth rotation and long-term use. ABS is prone to wear and deformation under repeated friction, which would cause gear jamming in mixers.
- How to prevent PC mixing cups from scratching during CNC machining?
We take three key steps: 1) Usa Sharp, high-quality solid carbide tools to minimize cutting force; 2) Apply a protective film to the cup surface before machining; 3) Clean chips with compressed air (not cloth) to avoid abrasive scratches. These measures keep the PC surface scratch-free.
- What is the total time required to machine a single mixer prototype?
Total time is ~4–7 days: 1 day for 3D modeling/material prep, 1–2 giorni per lavorazione CNC (ruvido + finitura), 1–2 giorni per la post-elaborazione (polishing/painting), and 1–2 days for assembly/debugging. Produzione in lotti (10+ prototipi) can be shortened to 3–5 days with parallel processing.