Che cos'è il processo di lavorazione CNC per un modello prototipo di mixer? Una guida passo passo

lavorazione CNC medica

Lo sviluppo di un modello prototipo di mixer richiede un preciso processo di lavorazione CNC per convalidare la razionalità del progetto, testare l'adattamento del componente (per esempio., montaggio della lama, strutture di trasmissione), e valutare i dettagli incentrati sull'utente (per esempio., base antiscivolo, reattività dei pulsanti). A differenza dei semplici elettrodomestici, i miscelatori sono compatti, strutture ad alta funzionalità: dall'agitazione curva 刀组 (set di coltelli) alle tazze di miscelazione trasparenti, che richiedono strategie di lavorazione su misura. Questa guida […]

Lo sviluppo di un modello prototipo di mixer richiede un preciso processo di lavorazione CNC per convalidare la razionalità del progetto, testare l'adattamento del componente (per esempio., montaggio della lama, strutture di trasmissione), e valutare i dettagli incentrati sull'utente (per esempio., base antiscivolo, reattività dei pulsanti). A differenza dei semplici elettrodomestici, i miscelatori sono compatti, strutture ad alta funzionalità: dall'agitazione curva 刀组 (set di coltelli) alle tazze di miscelazione trasparenti, che richiedono strategie di lavorazione su misura. Questa guida analizza l'intero flusso di lavoro, from preliminary design to final assembly, with key parameters, selezioni dei materiali, and practical tips to ensure prototype success.

1. Preparazione preliminare: Lay the Foundation for Machining

The success of CNC machining starts with thorough preparation, including 3D modeling, selezione del materiale, and equipment/tool readiness. This stage avoids rework and ensures alignment with design goals.

(1) 3D Modeling: Define Mixer Structure with Precision

Use professional CAD software (per esempio., SolidWorks, UG, ProE) to create a detailed 3D model covering all critical components. The model must balance aesthetic design, functional logic, and machining feasibility.

Component CategoryKey Design DetailsPrecision RequirementsScopo
Main Body (Shell)Streamlined contour, base antiscivolo (groove depth 2mm), button mounting holes (Φ8mm)Shell dimensional error ±0.2mm; hole position tolerance ±0.1mmEnsure structural stability; fit control buttons and motor components
Mixing Cup (Transparent)Inner cavity volume (per esempio., 600mL), feeding port (Φ60mm), discharge outlet (Φ20mm)Cavity roundness error ≤0.1mm; wall thickness uniformity ±0.05mmEnsure smooth material mixing; avoid leakage at connections
Knife Set & Tool HolderBlade curve (radius 5mm), mounting slot (depth 6mm), gear cavity (for POM gears)Slot depth tolerance ±0.05mm; gear cavity clearance 0.1mmFit rotating components; ensure smooth blade operation

Model Optimization Tips:

  • Component Splitting: Split integrated structures (per esempio., cup body + lid) into independent parts to avoid tool interference. Per esempio, machine the mixing cup and its lid separately, then assemble with a sealing ring.
  • Process Marking: Label critical features (per esempio., “polish inner wall of mixing cup”) and reference datums (per esempio., base bottom as origin) to guide CNC programming.
  • Interference Check: Use software to simulate blade rotation—ensure 0.5mm clearance between blade and cup wall to prevent friction and material jamming.

(2) Selezione dei materiali: Match Performance to Component Roles

Mixer components have distinct functional needs (trasparenza, resistenza all'usura, forza), so material selection is critical. Below is a detailed comparison of suitable options:

Tipo materialeApplicable ComponentsProprietà chiaveMachinability Advantages
Plastica ABSMain shell, base, lidHigh impact resistance (Izod strength 20 kJ/m²), easy to color, basso costoLow tool wear; machinable at 8,000–12,000 rpm (fast and efficient)
PC PlasticTransparent mixing cup, observation windowHigh transparency (light transmittance ≥88%), impact-resistant (10x stronger than glass)Precision cutting achievable; minimal edge chipping (≤0.1mm)
POM (Polyoxymethylene)Gears, tool holder (wear-resistant parts)Low friction coefficient (0.15), high wear resistance, good dimensional stabilityNo deformation during machining; suitable for small transmission parts
Aluminum Alloy (6061)Motor brackets, metal decorative partsHigh rigidity (resistenza alla trazione 276 MPa), resistente alla corrosioneFast cutting speed; surface can be anodized for enhanced texture
Acciaio inossidabile (304)Simulation knife shafts (optional)High strength, resistente alla corrosione, wear-resistantSuitable for high-precision cutting; maintains shape under stress

Material Blank Preparation:

  • Cut blanks with 5–10mm machining allowance on all sides to accommodate roughing and finishing:
  • A PC mixing cup (final size: Φ90mm×150mm) needs a Φ100mm×160mm blank.
  • An ABS main shell (220mm×160mm×90mm) requires a 230mm×170mm×100mm blank.

(3) Attrezzatura & Tool Preparation: Ensure Machining Accuracy

Select CNC equipment and tools based on component complexity and material properties to avoid defects like tool marks or dimensional deviations.

Equipment/Tool TypeSelection CriteriaRecommended Specifications
CNC Machining Center3-axis for flat parts; 5-axis for curved surfaces (per esempio., blade curves)Positioning accuracy ±0.005mm; spindle speed range 8,000–24,000 rpm
Milling CuttersSolid carbide for plastics; acciaio rapido (HSS) for metalRoughing: Φ8–Φ12mm flat-bottom mills (fast material removal)- Finitura: Φ2–Φ6mm ball-head mills (curved surfaces); Φ0.5–2mm small mills (logo/buttons)
Special ToolsTaper cutters (chamfering cup edges); diamond polishers (PC transparency)Taper angle 45°; diamond polisher grit 1,200# (for PC surface refinement)
FixturesVacuum suction cups (flat ABS/PC parts); precision vises (metal components)Vacuum pressure ≥0.8 MPa; vise clamping force ≥3 kN (prevents workpiece displacement)

2. CNC Machining Execution: From Blank to Prototype Components

This stage divides machining into roughing and finishing to balance efficiency and precision—critical for mixer components with diverse structures.

(1) Rough Machining: Shape the Foundation

Roughing removes most excess material to bring the blank close to the final shape, prioritizing speed while avoiding tool damage.

Component TypeRoughing FocusKey Operations & Parameters
ABS Main ShellMachine outer contour, base grooves, button holesUse Φ10mm flat-bottom mill; velocità di taglio 10,000 giri/min, feed rate 1,200 mm/min; layer depth 3mm
PC Mixing CupMill outer wall and inner cavity; pre-drill feeding/discharge outletsUse Φ8mm end mill; velocità di taglio 9,000 giri/min, feed rate 800 mm/min; retain 0.5mm finishing allowance
POM Gear CavityMachine cavity outline and mounting holesUse Φ6mm end mill; velocità di taglio 8,000 giri/min, feed rate 600 mm/min; avoid overheating (POM melts at 160°C)

Post-Roughing Inspection:

  • Use a digital caliper to check key dimensions (per esempio., mixing cup diameter, shell height) and ensure they are within ±0.5mm of the design value.
  • Clean chips with compressed air—especially critical for PC parts (chips left on surfaces cause scratches during finishing).

(2) Finitura: Achieve Precision & Surface Quality

Finishing refines components to meet final design requirements, focusing on transparency (computer), smoothness (ABS), and dimensional accuracy (POM/metal).

Component TypeFinishing FocusKey Operations & Parameters
PC Mixing CupPolish inner/outer walls (trasparenza); chamfer edges (prevent sharpness)Use Φ4mm ball-head mill (inner wall); velocità di taglio 15,000 giri/min, feed rate 500 mm/min; then diamond polish (light transmittance ≥85%)
ABS Main ShellSmooth shell surface; engrave logo/button labels (depth 0.3mm)Use Φ2mm ball-head mill; velocità di taglio 12,000 giri/min, feed rate 700 mm/min; surface roughness Ra ≤0.8μm
POM Gear CavityRefine cavity walls; ensure gear clearance (0.1mm)Use Φ3mm end mill; velocità di taglio 9,000 giri/min, feed rate 500 mm/min; dimensional tolerance ±0.05mm
Aluminum Motor BracketSmooth mounting surfaces; drill precision holes (Φ5mm)Use Φ5mm twist drill; velocità di taglio 18,000 giri/min, feed rate 1,000 mm/min; hole roundness error ≤0.02mm

Finishing Quality Checks:

  • For PC parts: Use a spectrophotometer to verify transparency (≥85%) and a surface roughness tester to confirm Ra ≤0.4μm.
  • For POM gear cavities: Use a feeler gauge to check clearance (0.1mm) and ensure gears rotate smoothly without jamming.

3. Post-elaborazione: Enhance Aesthetics & Funzionalità

Post-processing bridges the gap between machined components and a realistic mixer prototype, focusing on surface refinement and assembly readiness.

(1) Trattamento superficiale: Tailor to Material & Component Role

Material/ComponentSurface Treatment StepsExpected Outcome
ABS Main Shell1. Sand with 400#→800#→1200# sandpaper (remove tool marks)2. Degrease with isopropyl alcohol3. Spray matte/gloss paint (50μm thickness)Paint adhesion ≥4B (no peeling); surface gloss 30–70 GU (per design)
PC Mixing Cup1. Diamond polishing (1,200#→2,000# grit)2. Clean with lens cleaner3. Apply anti-scratch coatingNo visible scratches; anti-scratch level ≥3H (pencil test)
Aluminum Brackets1. Degrease with alkaline cleaner2. Anodize (silver-gray, 8–10μm film)3. Sandblast (matte finish)Corrosion resistance: No rust after 48-hour salt spray test; friction coefficient ≤0.15
POM Gear PartsNo additional treatment (naturally smooth surface)Friction coefficient remains 0.15; no wear after 1,000 rotation tests

(2) Assemblea & Functional Debugging

Proper assembly ensures components work together seamlessly, while functional tests validate the prototype’s usability.

Assembly Steps:

  1. Pre-Assembly Check: Verify all parts meet dimensional requirements (per esempio., mixing cup fits shell with 0.5mm clearance).
  2. Component Fixing:
  • Bond PC mixing cup to ABS shell with food-grade adhesive (ensure no leakage).
  • Screw aluminum motor brackets to the base (coppia 5 N·m, avoid thread damage).
  • Install POM gears and 3D-printed resin simulation blades (replace real metal blades for safety).
  1. Sealing Test: Pour 300mL water into the mixing cup—check for leakage at connections (no water seepage within 10 minutes).

Functional Debugging:

  • Button Operation: Test switch/pulse buttons 100 times—stroke 2mm ±0.2mm, feedback force 5–8N (comfortable for users).
  • Blade Rotation: Simulate mixing with a motor (600 giri/min)—ensure blade rotates smoothly, no friction with cup wall.
  • Material Flow: Pour simulated ingredients (per esempio., water + flour mixture) through the feeding port—check flow rate (≥80mL/min) and no residue in the cup.

4. Controllo qualità & Process Optimization

Strict quality control ensures the prototype meets design standards, while optimization reduces costs for future iterations.

(1) Key Quality Control Standards

Control ItemAcceptance CriteriaInspection Method
Dimensional AccuracyMixing cup: ±0.1mm- Shell: ±0.2mm- Gear cavity: ±0,05 mmCMM (critical components); digital caliper (general parts)
Surface Quality– computer: Ra ≤0.4μm, transparency ≥85%- ABS: Ra ≤0.8μm, no tool marksSurface roughness tester; spectrophotometer; visual inspection (500lux light)
Functional PerformanceNo leakage (10-minute water test)- Blade rotation: 600 rpm ±50 rpmWater leakage test; tachometer (blade speed)

(2) Process Optimization Tips

  1. Material Saving: Design hollow structures for ABS parts (per esempio., base with 3mm thick walls) to reduce blank size—saves 20–30% material cost.
  2. Machining Efficiency: Combine roughing and semi-finishing for simple parts (per esempio., decorative strips) to cut tool change time by 15%.
  3. Post-Processing Simplification: For hidden parts (per esempio., motor brackets), skip anodizing—use natural aluminum finish to save 10–15% of treatment cost.

Yigu Technology’s Perspective on CNC Machining Mixer Prototype Models

Alla tecnologia Yigu, crediamo functional precision and cost balance are the core of mixer prototype machining. Many clients overcomplicate processes—for example, using 5-axis machines for flat ABS shells when 3-axis works, or over-polishing hidden POM parts. Our team optimizes for both quality and efficiency: We use PC with diamond polishing for mixing cups (ensuring transparency ≥85%) and 3-axis machines for most components to cut 20% of machining time. We also simplify blade simulation (3D-printed resin instead of metal) for safety and cost. For batch prototypes, we use multi-cavity fixtures to machine 2–3 mixing cups at once, reducing production time by 30%. Our goal is to deliver prototypes that validate design and user needs at the lowest cost.

Domande frequenti

  1. Why is POM preferred for mixer gear components instead of ABS?

POM has a lower friction coefficient (0.15 contro. 0.3 for ABS) and higher wear resistance, making it ideal for transmission gears that require smooth rotation and long-term use. ABS is prone to wear and deformation under repeated friction, which would cause gear jamming in mixers.

  1. How to prevent PC mixing cups from scratching during CNC machining?

We take three key steps: 1) Use sharp, high-quality solid carbide tools to minimize cutting force; 2) Apply a protective film to the cup surface before machining; 3) Clean chips with compressed air (not cloth) to avoid abrasive scratches. These measures keep the PC surface scratch-free.

  1. What is the total time required to machine a single mixer prototype?

Total time is ~4–7 days: 1 day for 3D modeling/material prep, 1–2 days for CNC machining (roughing + finitura), 1–2 days for post-processing (polishing/painting), and 1–2 days for assembly/debugging. Batch production (10+ prototipi) can be shortened to 3–5 days with parallel processing.

Indice
Scorri fino all'inizio