Qual è il processo di lavorazione CNC per un prototipo di pentola a pressione elettrica? Una guida passo passo

noioso

Lo sviluppo di un prototipo di pentola a pressione elettrica richiede una lavorazione CNC precisa per convalidare la razionalità del progetto, testare la funzionalità (per esempio., tenuta a pressione), e valutare l'aspetto: passaggi critici prima della produzione di massa. A differenza dei normali elettrodomestici da cucina, le pentole a pressione elettriche hanno requisiti rigorosi in termini di prestazioni di tenuta e resistenza strutturale, che modellano ogni fase del processo CNC. Questa guida analizza il […]

Lo sviluppo di un prototipo di pentola a pressione elettrica richiede una lavorazione CNC precisa per convalidare la razionalità del progetto, testare la funzionalità (per esempio., tenuta a pressione), e valutare l'aspetto: passaggi critici prima della produzione di massa. A differenza dei normali elettrodomestici da cucina, electric pressure cookers have strict requirements for sealing performance E robustezza strutturale, che modellano ogni fase del processo CNC. Questa guida analizza l'intero flusso di lavoro, dalla progettazione alla post-elaborazione, con parametri chiave, material choices, and practical tips to ensure prototype success.

1. Preparazione preliminare: Progetto & Data Processing

The foundation of a high-quality prototype lies in accurate design and optimized data. This stage focuses on creating a detailed 3D model and preparing it for CNC machining.

(1) 3D Modeling with CAD Software

Use professional CAD tools (per esempio., SolidWorks, UG) to design a model that reflects every critical detail of the electric pressure cooker. The model must include both external and internal structures, plus process features to simplify machining.

Structure CategoryKey Design DetailsPrecision RequirementsScopo
External StructureLid (curved top), pot body (cylindrical shape), handle (ergonomic grip), control buttons (凸起 height ≥2mm)Lid-body alignment tolerance ±0.1mm; handle mounting hole position error ≤0.05mmEnsure assembly accuracy; meet user ergonomics
Internal StructureSealing ring groove (width 5mm ±0.05mm), pressure valve mounting seat, sensor fixing holesSealing groove depth tolerance ±0.03mm; valve seat hole diameter error ≤0.02mmGuarantee pressure tightness; fit internal components (per esempio., sensori)
Process FeaturesDraft slope (3°~5° on lid/pot body), rounding corners (R2mm on handle edges), parting linesDraft slope ensures easy demolding; rounding prevents stress concentrationSimplify CNC machining; avoid prototype damage during testing

(2) Model Repair & Format Conversion

Raw 3D models often have defects that can ruin machining—fix these issues before exporting:

  1. Defect Checking: Use software like Magics to identify broken surfaces, overlapping geometry, or missing features (per esempio., incomplete sealing grooves).
  2. Repair Steps: Fill gaps, merge overlapping surfaces, and smooth uneven edges to ensure the model ismachinable.
  3. Format Export: Convert the repaired model to Formato STL (the standard for CNC machining), with a mesh density of 0.1mm (balances detail and file size).

2. Selezione dei materiali & Processing Process Planning

Choosing the right materials and processes is critical—materials must mimic the performance of mass-produced parts, while processes need to balance precision and cost.

(1) Prototype Material Selection

Different components of the electric pressure cooker require materials with specific properties (per esempio., resistenza al calore, resistenza all'usura). Below is a detailed comparison:

Tipo materialeApplicable PartsProprietà chiaveMachinability TipsTrattamento superficiale
ABSPot body, lid (appearance parts), control button housingsEasy to mill, superficie liscia, basso costoUse high-speed spindle (10,000–15,000 rpm) per evitare che si sciolgaSpray matte black paint (adhesion ≥4B standard) to simulate plastic texture
Nylon (PA)Internal structural parts (per esempio., staffe per sensori, pressure valve covers)Alta resistenza, resistenza all'usura, resistenza al calore (fino a 120°C)Utilizzare utensili in metallo duro; add cutting fluid to prevent overheatingNo treatment needed (naturally wear-resistant)
Lega di alluminio (6061)Metal handles, lid holdersLeggero, elevata rigidità, resistente alla corrosioneUse high spindle speed (18,000–22,000 rpm) to reduce burrsAnodizzazione (silver-gray, 8–10μm thick) for anti-oxidation + trafilatura
Transparent AcrylicObservation windows (if included)High light transmittance (≥90%), clear appearancePrecision cutting with Φ3mm ball-head tool; avoid chipping edgesPolishing with abrasive paste (from coarse 400# to fine 1200#)

(2) Core CNC Machining Processes

The process combination depends on the part’s shape and function. Below are the key processes and their applications:

Process NameApplication ScenariosParametri chiave & Suggerimenti
Fresatura CNCPot body cavity (depth ≥80mm), lid curved surface, sealing ring grooveUtilizzo “layered cuttingfor deep cavities (0.5mm per layer); use ball-head tool for curved surfaces (Ra ≤1.6μm)
Tornitura CNCRound components (per esempio., pressure valve knobs, handle shafts)Velocità del mandrino 20,000 giri/min; velocità di avanzamento 1,000 mm/min (ensures smooth surface)
Perforazione & ToccandoSensor mounting holes (M4 threads), handle fixing holesDrill Φ3.3mm bottom holes first, then tap (avoids thread stripping); use pecking drilling for deep holes
Elettroerosione a filoSpecial-shaped parts (per esempio., acrylic observation window frames)Achieves accuracy ±0.02mm (critical for transparent, visible parts)

3. Esecuzione della lavorazione CNC: Passaggi chiave & Parameters

Precise execution is essential to avoid defects like poor sealing or structural weakness. Focus on programming, selezione dello strumento, and process monitoring.

(1) Programmazione & Selezione dello strumento

Use CAM software (per esempio., Mastercam, PowerMill) to convert STL models into G-code, and select tools based on material and feature:

Machining StageTool TypeTool SizeKey Settings
RoughingFlat-bottom end millΦ10mm (ABS/nylon), Φ8mm (lega di alluminio)Remove 90% di materiale; leave 0.3mm finishing allowance
Semi-FinishingBall-head end millΦ6mmSmooth curved surfaces; reduce allowance to 0.1mm
FinituraSmall ball-head end millΦ3mm (ABS/nylon), Φ2mm (acrilico)Machine fine features (per esempio., sealing grooves); achieve Ra ≤1.0μm
PerforazioneTwist drillΦ2–Φ5mmPecking drilling (drill 3mm, retract 1mm) to clear chips

(2) Machining Parameter Setting

Parameters vary by material to ensure quality and efficiency. Below is a practical reference:

MaterialeMachining StageVelocità del mandrino (giri/min)Tasso di avanzamento (mm/min)Cutting Depth (mm)
ABSRoughing10,000–12,0001,500–2,0000.5–1.0
ABSFinitura15,000–18,000800–1,2000.1–0,3
Lega di alluminioRoughing12,000–15,0001,200–1,8000.5–0.8
Lega di alluminioFinitura18,000–22,000800–1,0000.1–0.2
NylonRoughing8,000–10.0001,000–1,5000.4–0.8
NylonFinitura12,000–15,000600–8000.1–0.2

(3) Machining Process Monitoring

The first prototype (first piece) requires strict monitoring to catch issues early:

  1. Dimensional Checks: Pause after roughing to measure critical features (per esempio., sealing groove width, lid-body gap) with calipers or a micrometer. Adjust the program if tolerance exceeds ±0.1mm.
  2. Surface Quality Checks: Inspect for tool marks, sbavature, or melting (common in ABS/nylon). If tool marks are visible, increase spindle speed by 2,000 giri/min.
  3. Clamping Stability: Ensure the part doesn’t shift during machining—use vacuum suction cups for flat parts (per esempio., aluminum handles) or custom fixtures for curved parts (per esempio., pot lids).

4. Post-elaborazione & Test funzionali

Post-processing enhances appearance and performance, while functional testing validates if the prototype meets design goals—especially critical for pressure cookers.

(1) Trattamento superficiale

Tailor the treatment to the part’s role and material:

PartSurface Treatment StepsExpected Outcome
ABS Pot Body/Lid1. Grind with 600# 1000# carta vetrata (remove tool marks); 2. Spray primer (30μm di spessore); 3. Spray matte paint (50μm di spessore); 4. Oven cure at 60°C for 2 orePaint adhesion ≥4B; no peeling or fading
Aluminum Alloy Handle1. Degrease with isopropyl alcohol; 2. Anodize (form oxide film); 3. Hand-wire draw along the lengthUniform silver-gray color; no scratches
Acrylic Observation Window1. Polish with 400# abrasive paste (remove cutting marks); 2. Polish with 1200# paste (achieve transparency); 3. Clean with lens cleanerLight transmittance ≥90%; no visible defects

(2) Test funzionali

Assemble internal components (sealing ring, pressure valve, sensor) and simulate real usage:

Test TypeTest MethodPass Standard
Tightness TestFill the pot with 500ml water, close the lid, and pressurize to 100kPa (simulate working pressure). Hold for 30 minuti.No water leakage; pressure drop ≤5kPa in 30 minuti
Button Feel TestPress control buttons 1,000 times (2 presses/second). Measure stroke (2mm ±0.2mm) and feedback force (5–8N).Consistent stroke and force; no button jamming
Structural Strength TestApply 5kg load to the lid (simulate accidental pressure). Hold for 10 minuti.No deformation; lid-body gap remains ≤0.1mm
Heat Resistance TestHeat the pot to 100°C (simulate cooking) and hold for 2 ore. Cool to room temperature.No material warping; sealing groove tolerance remains ±0.05mm

5. Ispezione & Ottimizzazione

Inspect critical dimensions and iterate on the design to fix defects—this ensures the prototype is ready for mold opening.

(1) Critical Dimension Inspection

Utilizzare un Macchina di misura a coordinate (CMM) to check key dimensions:

  • Lid-body mating gap: ±0,1 mm (ensures sealing)
  • Sealing ring groove width: 5mm±0,05 mm (fits standard sealing rings)
  • Threaded hole position (sensor mounting): ±0,05 mm (avoids assembly interference)
  • Handle mounting hole alignment: ≤0,03 mm (ensures handle stability)

(2) Design Iteration & Ottimizzazione dei costi

If defects are found (per esempio., leakage, button jamming), modify the 3D model and reprocess. Use these tips to reduce costs:

  1. Split Complex Parts: Machine the lid and its holder separately instead of as one piece—cuts machining time by 30% and reduces tool wear.
  2. Use Hybrid Processes: 3D print small internal parts (per esempio., pressure valve covers) with SLS nylon, then CNC machine appearance parts (per esempio., pot body) with ABS—lowers material waste by 25%.
  3. Batch Machining: Per 10+ prototipi, use aluminum profile blanks (pre-cut to approximate size) instead of full blocks—reduces material removal by 40%.

Yigu Technology’s Perspective on Electric Pressure Cooker Prototype CNC Machining

Alla tecnologia Yigu, crediamo sealing performance and structural strength are the core of electric pressure cooker prototype machining. Many clients overspend by using high-cost materials for non-critical parts—e.g., aluminum alloy for internal brackets that only need nylon. Our team selects materials strategically: ABS for appearance parts (conveniente, easy to finish) and nylon for internal structures (resistente al calore, resistente all'usura). We also optimize machining for sealing: Nostro “layered finishingof sealing grooves ensures Ra ≤0.8μm, and we test tightness three times during production to avoid leakage. For cost savings, we use hybrid CNC + 3D printing and batch processing, cutting prototype costs by 20–30%. Our goal is to deliver prototypes that accurately validate design and function, accelerating clients’ path to mass production.

Domande frequenti

  1. Why is nylon (PA) used for internal structural parts instead of ABS?

Nylon has better heat resistance (fino a 120°C) and wear resistance than ABS—critical for internal parts near heating elements or moving components (per esempio., pressure valves). ABS melts at ~90°C and wears faster, making it unsuitable for parts that need to withstand high temperatures or repeated use.

  1. How do you ensure the lid and pot body have a tight seal after CNC machining?

We focus on two key steps: 1) Machining the sealing groove with a Φ3mm ball-head tool to achieve Ra ≤0.8μm (smooth surface reduces leakage risk); 2) Inspecting the lid-body gap with a CMM to ensure tolerance ±0.1mm. We also test tightness with 100kPa pressure—only prototypes with ≤5kPa pressure drop pass.

  1. How long does it take to CNC machine a single electric pressure cooker prototype?

Total time is ~4–6 days: 1 day for design/data processing, 1–2 days for CNC machining (varies by part complexity), 1 day for post-processing (painting/anodizing), and 1–2 days for assembly/functional testing. Batch production (10+ prototipi) can be shortened to 3–4 days with parallel processing.

Indice
Scorri fino all'inizio