Qual è il processo di lavorazione CNC di un prototipo di forno elettrico? Una guida passo-passo

3 axis cnc machining

Developing an electric oven prototype requires precise CNC machining to verify structural rationality, functional feasibility, and appearance texture—especially since its structure (cabinet, Pannello della porta, heating components) and functional needs differ from appliances like electric pressure cookers. This guide breaks down the full CNC machining workflow for electric oven prototypes, from preliminary design to post-processing, with key parameters, scelte materiali, and problem-solving tips.

1. Preparazione preliminare: Progetto & Data Processing

Prima di lavorare, thorough design and data optimization lay the foundation for accurate, produzione efficiente. This stage focuses on 3D modeling and model splitting to align with CNC capabilities.

(1) 3D Modellazione con software CAD

The 3D model must fully reflect the electric oven’s exterior structure, internal components, E process characteristics—every detail impacts machining accuracy and final functionality. Key elements to include:

Structure CategoryKey Design DetailsRequisiti di precisioneScopo
Exterior StructureCabinet outline, Pannello della porta (glass viewing window + maniglia), buchi di dissipazione del calore, control knobs/buttonsCabinet diagonal error ≤0.3mmEnsure sealing when closed; match aesthetic standards
Struttura internaGrill brackets (slot), heating tube mounting holes, thermostat mounting positionsGrill slot accuracy ±0.1mm; heating tube hole spacing tolerance ±0.2mmFit real components (PER ESEMPIO., heating tubes, thermostats)
Process FeaturesHinge mounting slots (Pannello della porta + cabinet), draft slope for heat dissipation holes0.3mm movable clearance for hinges; 3°~5° draft slopeEnable smooth door operation; simplify CNC machining

(2) Model Repair & Hierarchical Splitting

Strutture complesse (PER ESEMPIO., multi-level grills, removable door panels) can’t be machined as a single piece—splitting them into individual components avoids tool interference and eases clamping.

Splitting Principles:

  1. Priorità easy clamping: Split large parts (PER ESEMPIO., cabinet) into single-sided machinable sections to reduce setup time.
  2. Minimize tool interference: Machine deep cavity structures (PER ESEMPIO., internal grill slots) separately instead of trying to access them from the outside.
  3. Mark assembly datums: When exporting STL files, label reference points (PER ESEMPIO., cabinet bottom, door dowel holes) to ensure accurate reassembly later.

2. Selezione del materiale & Processing Process Planning

Choosing the right materials for each part is critical—they must balance machinability, funzionalità, e costo. Below is a detailed breakdown of material options and their corresponding processes:

(1) Prototype Material Selection

Different components of the electric oven require materials with specific properties (PER ESEMPIO., Resistenza al calore, trasparenza):

Tipo di materialeApplicable PartsMachining Key PointsTrattamento superficiale
AddominaliCabinet body, control knobsEasy to mill; Usura bassa degli utensiliSpray matte oil (adhesion ≥4B standard) to simulate metal texture
Lega di alluminioHeat dissipation hole panels, handle bracketsRequires high spindle speed (to avoid burrs); Usa gli strumenti in carburoAnodizzante (silver-gray oxide film, 8–12μm thick) for anti-oxidation + wire drawing for uniform texture
Transparent AcrylicDoor panel observation windowPrecision cutting; avoid chipping edgesLucidare (light transmittance ≥90%) to ensure clear visibility
Pom (Poliossimetilene)Hinge shaft sleeves, grill railsBasso coefficiente di attrito; Evita il surriscaldamento (prone to melting)No additional treatment (naturally wear-resistant for sliding parts)

(2) Core CNC Machining Processes

The machining process is tailored to each part’s shape and material. Below are the key process combinations and their purposes:

Nome del processoScenari di applicazioneParametri chiave & Suggerimenti
Macinazione CNCCabinet cavities (depth ≥50mm), heat dissipation hole arraysUse long-shank tools for deep cavities (Prevenire le vibrazioni); use array programming for hole arrays (improve efficiency by 30–50%)
Perforazione & ToccandoHinge M3 threaded holesDrill Φ2.5mm bottom holes first, then tap (avoids thread stripping)
EDM di filoSpecial-shaped profiles (PER ESEMPIO., acrylic viewing window)Achieves accuracy ±0.02mm (critical for transparent, visible parts)

3. Key Implementation Details for CNC Machining

To ensure precision and avoid defects, focus on programming strategies, clamping methods, and parameter optimization—especially for challenging structures like deep cavities or thin walls.

(1) Programmazione & Tool Strategy

Different features (PER ESEMPIO., cavità, buchi di dissipazione del calore) require specific toolpaths to balance speed and accuracy:

Cavity Machining (PER ESEMPIO., Cabinet Internal Space)

  • Lavorazione grezza: Utilizzo “contour height layered cuttingwith a Φ12mm flat-bottom tool to quickly remove material. Leave 0.3mm finishing allowance to avoid overcutting.
  • Finitura: Switch to a Φ6mm ball-head tool and usewrap cuttingalong the cavity surface. This ensures the inner wall is smooth (surface roughness Ra ≤1.6μm), critical for proper component fit.

Heat Dissipation Hole Processing

  • Round array holes (Φ5mm): Utilizzo “pecking drilling” (drill 2–3mm, retract to clear chips) to prevent tool breakage in deep holes.
  • Special-shaped holes (PER ESEMPIO., long strips): Use a Φ3mm tool with a 0.8mm stepmilled groovepath—this ensures clean edges without excessive tool wear.

(2) Clamping Methods & Parametri di lavorazione

Clamping directly affects part stability during machining, while parameters (velocità del fuso, velocità di alimentazione) impact surface quality and efficiency:

Tipo di parteClamping MethodVelocità del fuso (RPM)Velocità di alimentazione (mm/min)Profondità di taglio (mm)
Cabinet Body (Addominali)Flat pliers + platen10,000–15,0001,200–2.0000.5–0,8
Aluminum Alloy PanelVacuum suction cup (flat surface)18,000–22,000800–1.5000.2–0,5
Transparent AcrylicDouble-sided tape fixing20,000–25,000500–1,0000.1–0,3

(3) Solving Common Machining Difficulties

Two major challenges in electric oven prototype machining are deep cavity vibration and thin-wall deformation—here’s how to address them:

DifficultyCausaSoluzione
Deep Cavity Vibration (≥50mm depth)Long tool overhang leads to instabilityUse TiAlN-coated carbide tools (increase rigidity); reduce feed rate to 800mm/min; boost cutting fluid flow (cool tool and clear chips)
Thin-Wall Deformation (side wall ≤2mm)Material is too fragile to withstand cutting forcesAdottare “taglio a strati + reinforcement”: Add temporary support ribs during machining, then mill them off after the part is stable

4. Post-elaborazione & Verifica funzionale

Dopo la lavorazione, post-processing enhances appearance and functionality, while functional tests confirm the prototype meets design goals.

(1) Trattamento superficiale

Surface treatment improves both aesthetics and performance—match the process to the part’s role:

ParteSurface Treatment StepsRisultato atteso
Cabinet Body (Addominali)1. Grind with 600# carta vetrata (remove tool marks); 2. Spray matte black paint; 3. Screen print control panel logos (temperature scales, function icons)Paint adhesion ≥4B; logo accuracy ±0.1mm (chiaro, aligned)
Aluminum Alloy Panel1. Anodize (form 8–12μm silver-gray oxide film); 2. Hand-grind along grain direction (wire drawing)Resistenza all'usura migliorata; uniform metal texture
Acrylic Viewing WindowPolishing with abrasive paste (step-by-step from coarse to fine)Light transmittance ≥90%; Nessun graffio

(2) Assemblaggio & Test funzionali

Assembly ensures components work together, while tests validate key functions like heat insulation and temperature control:

Functional Assembly:

  • Hinge installation: Ensure door opens/closes smoothly with a gap ≤0.5mm (prevents heat leakage).
  • Grill fixing: Check that the grill slides along rails with resistance ≤5N; positioning slots fit tightly (no wobble).

Mock Tests:

  • Heat insulation test: Simulate heating with a resistance wire (mimic heating tube). Ensure the distance between the cabinet shell andheating tubeis ≥20mm; shell temperature rise ≤45°C (safe for users).
  • Temperature control simulation: Adjust the control knob—verify that the stroke matches thethermostat” (virtual element) scale with an error ≤5% (accurate temperature regulation).

5. Ispezione & Ottimizzazione dei costi

Inspection ensures precision, while optimization reduces costs without sacrificing quality—critical for prototype development.

(1) Critical Dimension Inspection

Usa una macchina di misurazione delle coordinate (CMM) to check key dimensions that impact functionality:

  • Door panel diagonal error ≤0.3mm (sealing when closed).
  • Heating tube mounting hole spacing ±0.15mm (matches real component sizes).
  • Hinge slot clearance 0.3mm (smooth door operation).

(2) Costo & Efficiency Optimization Tips

Three strategies to lower costs and speed up production:

  1. Disassemble for cost savings: Split the door into glass (acrylic cutting) and frame (ABS milling) instead of machining as one piece—cuts cost by 20–30%.
  2. Fast clamping with zero-point positioning: Use a zero-point system to reduce tool-setting time when changing parts; single clamping error ≤0.005mm (maintain accuracy).
  3. Hybrid processes for details: Combine CNC milling (for large structures) with SLA 3D printing (for small details like knob top grain)—faster than full CNC for intricate features.

Yigu Technology’s Perspective on Electric Oven Prototype CNC Machining

Alla tecnologia Yigu, Crediamo precision balancing and process optimization are key to efficient electric oven prototype machining. Many clients overcomplicate machining by treating all parts with the same precision—for example, using high-cost aluminum alloy for non-heat-related panels. Our team helps select materials strategically: ABS for cabinets (economico, easy to finish) and aluminum alloy only for heat-dissipating parts (needs durability). We also optimize toolpaths—for deep cabinet cavities, our TiAlN-coated tools and reduced feed rates cut vibration by 40%, while our “taglio a strati + reinforcementmethod eliminates thin-wall deformation. Inoltre, we use hybrid CNC + 3D printing to speed up detail production by 25%. Our goal is to deliver prototypes that accurately validate design goals at the lowest possible cost.

Domande frequenti

  1. Why is acrylic used for the electric oven’s viewing window instead of glass?

Acrylic is lighter, più resistente all'impatto, and easier to CNC-cut with high precision (light transmittance ≥90%) than glass—critical for prototypes where weight and machining flexibility matter. Glass is heavier, more fragile during machining, and harder to shape into custom sizes, making it impractical for prototype development.

  1. What’s the purpose of the 3°~5° draft slope on heat dissipation holes?

The draft slope simplifies CNC machining: it allows the tool to exit the hole cleanly without scraping the edges (reducing burrs). Without a draft slope, l’utensile sfregherebbe contro le pareti verticali del foro, causando superfici ruvide o usura degli utensili, entrambi i quali aumentano i tempi di rilavorazione.

  1. Quanto tempo è necessario per realizzare con la macchina CNC un prototipo di forno completamente elettrico?

Per un unico prototipo, il tempo totale è di ~ 3–5 giorni: 1 giornata per la progettazione/elaborazione dati, 1–2 giorni per lavorazione CNC (A seconda della complessità della parte), 0.5–1 giorno per la post-elaborazione, e 0,5–1 giorno per l'assemblaggio/test. Produzione in lotti (10+ prototipi) può essere ridotto a 2–3 giorni utilizzando strumenti multi-cavità e lavorazione parallela.

Indice
Scorri fino all'alto