Che cos'è il processo di modellazione della lavorazione CNC per un prototipo di cuociriso? Una guida passo passo

4 lavorazione CNC ad assi

Lo sviluppo di un prototipo di cuociriso richiede un preciso processo di modellazione con lavorazione CNC per convalidare la fattibilità del progetto, testare la stabilità strutturale, e garantire l'allineamento con le esigenze degli utenti: passaggi critici prima della produzione di massa. A differenza di altri elettrodomestici da cucina, I cuociriso hanno requisiti strutturali unici (per esempio., fodere resistenti al calore, coperchi sigillati) che danno forma ad ogni fase del processo di modellazione. Questa guida si rompe […]

Lo sviluppo di un prototipo di cuociriso richiede un preciso processo di modellazione con lavorazione CNC per convalidare la fattibilità del progetto, testare la stabilità strutturale, e garantire l'allineamento con le esigenze degli utenti: passaggi critici prima della produzione di massa. A differenza di altri elettrodomestici da cucina, I cuociriso hanno requisiti strutturali unici (per esempio., fodere resistenti al calore, coperchi sigillati) che danno forma ad ogni fase del processo di modellazione. Questa guida analizza l'intero flusso di lavoro, from 3D modeling to post-processing, con parametri chiave, material choices, and practical tips to ensure prototype success.

1. Preparazione preliminare: Lay the Foundation for Modeling

The success of CNC machining starts with thorough preparation, including 3D model design, selezione del materiale, and tool/fixture readiness. This stage ensures the subsequent machining process is efficient and accurate.

(1) 3Modellazione D: The Core of Prototype Design

Use professional CAD software to create a detailed 3D model that covers all key structures of the rice cooker. The model must balance design aesthetics, functional needs, and machining feasibility.

Structure CategoryKey Design DetailsPrecision RequirementsScopo
External StructureShell (cylindrical or square shape), control panel (button positions, display window), handle (ergonomic curve)Shell diameter error ±0.2mm; button hole position tolerance ±0.1mmEnsure assembly accuracy; meet user operation habits
Internal StructureLiner (deep cavity, 3–5mm thickness), heating plate mounting groove, sensor fixing holesLiner roundness error ≤0.1mm; mounting groove depth tolerance ±0.05mmFit internal components (per esempio., heating plate, sensor); ensure heat conduction efficiency
Process FeaturesDraft slope (3°~5° on shell/lid), rounding corners (R1.5mm on handle edges), parting linesDraft slope avoids machining interference; rounding prevents user scratchesSimplify CNC machining; improve user safety

Model Optimization Tips:

  • Layered Processing: Split complex structures (per esempio., lid with inner sealing ring groove) into separate components (outer lid + inner sealing layer) to reduce tool interference during machining.
  • Detail Marking: Clearly label key dimensions (per esempio., liner thickness, button hole diameter) in the model to avoid machining deviations.
  • Interference Check: Use software (per esempio., SolidWorks) to simulate part assembly and ensure no overlapping or collision between components (per esempio., lid and shell when closed).

(2) Selezione dei materiali: Match Performance to Component Roles

Different parts of the rice cooker require materials with specific properties (per esempio., resistenza al calore, rigidità). Below is a detailed comparison of suitable materials:

Tipo materialeApplicable PartsProprietà chiaveMachinability Advantages
Plastica ABSShell, control panel housing, button basesLeggero (density 1.05g/cm³), facile da colorare, basso costoLow tool wear; can be machined at high speed (10,000–15,000 rpm)
Lega di alluminio (6061)Liner, heating plate brackets, handle coresAlta resistenza (tensile strength 276MPa), good heat conductivity, resistente alla corrosioneSmooth surface after machining; suitable for deep cavity processing (liner)
Acrilico (PMMA)Display window, transparent lid partsHigh light transmittance (≥92%), clear appearance, buona resistenza agli urtiPrecision cutting achievable; polished surface mimics glass
Nylon (PA)Internal structural supports (per esempio., staffe per sensori)Resistenza al calore (continuous use temp 80–120°C), resistente all'usuraBasso coefficiente di attrito; no deformation during machining

Blank Preparation:

  • Cut blanks according to the maximum size of each part: Per esempio, an ABS shell with a diameter of 200mm and height of 150mm requires a 220mm×220mm×160mm ABS block to reserve machining allowance (5–10mm on each side).
  • For aluminum alloy liners, use extruded aluminum blocks to ensure uniform material density and reduce machining defects.

(3) Tool & Fixture Preparation: Ensure Machining Stability

The right tools and fixtures prevent part shifting and ensure machining accuracy.

Tool TypeApplication ScenariosTool Size Recommendation
Flat-Bottom End MillRough machining of shell contours, liner outer wallsΦ8–Φ12mm (ABS); Φ6–Φ10mm (lega di alluminio)
Ball-Head End MillFinishing of curved surfaces (handle, lid edges), deep cavity inner wallsΦ3–Φ6mm (ABS/acrylic); Φ2–Φ5mm (lega di alluminio)
Twist DrillDrilling of button holes, sensor mounting holesΦ2–Φ8mm (match hole size requirements)
TapProcessing of threaded holes (per esempio., handle fixing holes)M3–M6 (according to assembly needs)

Fixture Selection:

  • Vacuum Suction Cups: For flat parts (per esempio., acrylic display windows, aluminum alloy plates) to avoid clamping marks.
  • Precision Vises: For irregular parts (per esempio., ABS shell blanks) with adjustable jaws to ensure firm fixing.
  • Custom Jigs: For deep cavity parts (per esempio., aluminum alloy liners) to support the cavity wall and prevent deformation during machining.

2. Esecuzione della lavorazione CNC: From Blank to Prototype Shape

This stage converts blanks into prototype parts through rough machining, finitura, and special structure processing—each step requires strict parameter control.

(1) Program Writing & Debugging: Avoid Machining Errors

  1. G-Code Generation: Import the 3D model into CAM software (per esempio., Mastercam, PowerMill). Set machining parameters based on material and tool type:
  • For ABS shell rough machining: Cutting speed 12,000 giri/min, velocità di avanzamento 1,500 mm/min, cutting depth 1–2mm.
  • For aluminum alloy liner finishing: Cutting speed 18,000 giri/min, velocità di avanzamento 800 mm/min, cutting depth 0.1–0.3mm.
  1. Empty Run Test: Conduct an empty run on the CNC machine to check tool path 合理性 (per esempio., no collision with fixtures, sufficient space for tool movement). Adjust the program if issues are found.

(2) Lavorazione grezza: Remove Excess Material Efficiently

The goal of rough machining is to quickly shape the blank into a rough outline close to the final part, leaving a small finishing allowance.

MaterialeMachining FocusKey Operations
Plastica ABSShell contour, control panel slotUse Φ10mm flat-bottom mill to cut the outer contour first; then machine the control panel slot (depth 5mm)
Lega di alluminioLiner deep cavity, bracket outlineUse Φ8mm flat-bottom mill for layered cutting of the liner cavity (depth 100mm, 2mm per layer); leave 0.3mm allowance
AcrilicoDisplay window outer shapeUse Φ6mm flat-bottom mill to cut the rectangular outline (size 80mm×50mm); leave 0.2mm allowance

(3) Finitura: Achieve Precision & Smooth Surface

Finishing focuses on improving dimensional accuracy and surface quality, ensuring the part meets design requirements.

Key Operations & Parameters:

  • Curved Surface Finishing: For handle curved surfaces, use a Φ4mm ball-head mill with a step distance of 0.1mm to eliminate tool marks; achieve surface roughness Ra ≤1.6μm.
  • Deep Cavity Finishing: For aluminum alloy liner inner walls, use an extended Φ3mm ball-head mill (length 120mm) to reach the cavity bottom; adjust spindle speed to 20,000 rpm to avoid vibration.
  • Hole Machining: Drill button holes (Φ5mm) with a twist drill, then use a reamer (Φ5mm) to improve hole roundness (error ≤0.02mm).

Special Structure Handling:

  • Thin-Walled Parts (per esempio., ABS shell side walls, 2spessore mm): Use high-speed cutting (15,000 giri/min) and reduce cutting depth to 0.5mm; add temporary support ribs during machining to prevent deformation.
  • Fori filettati: Drill bottom holes first (per esempio., Φ3.3mm for M4 threads), then tap with a high-speed steel tap (velocità 500 giri/min) to avoid thread stripping.

(4) Machining Quality Inspection

After finishing, inspect each part to catch defects early:

  1. Dimensional Check: Use a digital caliper or coordinate measuring machine (CMM) to verify key dimensions—e.g., liner diameter (200mm±0,1 mm), button hole spacing (30mm±0,05 mm).
  2. Surface Check: Visually inspect for tool marks, sbavature, or melting (common in ABS); use a roughness tester to confirm Ra value (≤1.6μm for appearance parts).

3. Post-elaborazione: Enhance Appearance & Funzionalità

Post-processing improves the prototype’s aesthetics and performance, making it closer to the mass-produced product.

(1) Trattamento superficiale: Tailor to Material & Part Role

MaterialePart TypeSurface Treatment StepsExpected Outcome
Plastica ABSShell, control panel1. Sand with 400#→800#→1000# sandpaper (remove tool marks); 2. Spray primer (30μm di spessore); 3. Spray matte paint (color matching to design, 50μm di spessore); 4. Oven cure at 60°C for 2 orePaint adhesion ≥4B (nessun peeling); uniform color, no bubbles
Lega di alluminioLiner, handle1. Degrease with isopropyl alcohol; 2. Anodize (form 8–10μm thick silver-gray oxide film); 3. Sandblast (for liner inner wall, improve heat absorption)Resistente alla corrosione; liner inner wall roughness Ra 3.2μm (good for heat conduction)
AcrilicoDisplay window1. Polish with 600#→1200#→2000# abrasive paste; 2. Clean with lens cleanerLight transmittance ≥90%; no visible scratches

(2) Assemblea & Functional Debugging

  1. Assemblea: Assemble processed parts (shell, liner, lid, pulsanti, display window) using screws or snaps—ensure no interference between components (per esempio., lid opens/closes smoothly, buttons press without jamming).
  2. Functional Test:
  • Structural Stability: Apply a 3kg load to the lid (simulate accidental pressure) per 10 minuti; check for deformation (no more than 0.2mm).
  • Fit Check: Verify the liner fits tightly in the shell (gap ≤0.5mm) to ensure heat is not lost.
  • Button Function: Test button stroke (2mm ±0.2mm) and feedback force (5–7N) to ensure comfortable operation.

4. Controllo qualità & Ottimizzazione: Ensure Prototype Reliability

Strict quality control ensures the prototype meets design standards, while optimization reduces costs and improves efficiency.

(1) Key Quality Control Points

Control ItemStandardInspection Method
Precisione dimensionaleKey dimensions error ≤±0.1mmCMM or digital caliper
Qualità della superficieNo tool marks, sbavature, or paint defectsIspezione visiva + roughness tester
Assembly MatchingNo interference; uniform gaps (≤0.5mm)Feeler gauge + assembly simulation
Material PerformanceABS parts: resistenza al calore (no deformation at 80°C for 1 ora); aluminum alloy parts: no rust after 48-hour salt spray testHigh-temperature oven + salt spray test

(2) Optimization Strategies

  1. Material Saving: Per pezzi di grandi dimensioni (per esempio., ABS shell), design hollow structures (with 3mm thick walls) to reduce blank size and material waste by 20–30%.
  2. Ottimizzazione dei processi: Combine rough and semi-finishing for simple parts (per esempio., button bases) to reduce tool change time by 15–20%.
  3. Batch Machining: Per 10+ prototipi, use multi-cavity fixtures to machine multiple parts at once—improve efficiency by 40–50%.

Yigu Technology’s Perspective on Rice Cooker Prototype CNC Machining Modeling

Alla tecnologia Yigu, crediamo design-machining integration is the core of efficient rice cooker prototype modeling. Many clients face issues like liner deformation or poor shell surface quality due to disconnected design and machining. Our team optimizes models for manufacturability: Per esempio, adding 0.5mm machining allowance to liner walls and designing draft slopes for shell parts to avoid tool jamming. We also select materials strategically—using ABS for shells (conveniente, easy to finish) and aluminum alloy 6061 for liners (excellent heat conduction, durevole). For post-processing, we use automated sanding equipment to ensure uniform surface quality, reducing manual errors by 30%. Our goal is to deliver prototypes that accurately reflect mass-production effects, helping clients shorten product development cycles by 20–25%.

Domande frequenti

  1. Why is aluminum alloy 6061 chosen for rice cooker liners instead of other materials?

Lega di alluminio 6061 has a balance of high strength, good heat conductivity (167W/m·K), and corrosion resistance—critical for liners that need to withstand high temperatures (fino a 100°C) and repeated use. It also machines smoothly, allowing for precise deep cavity processing to fit heating plates, which other materials like stainless steel (heavier, lower heat conductivity) o plastica (poor heat resistance) non può corrispondere.

  1. How to prevent deformation of thin-walled ABS shell parts during CNC machining?

We use three key methods: 1) High-speed cutting (15,000–18,000 rpm) to reduce cutting force and heat generation; 2) Reduce cutting depth to 0.5mm per pass and increase feed rate to 1,200 mm/min to minimize material stress; 3) Add temporary support ribs (2mm di spessore) in the model, which are machined off after the main structure is stable.

  1. What is the total time required for the CNC machining modeling process of a single rice cooker prototype?

Total time is ~3–5 days: 1 day for 3D modeling and material preparation, 1–2 days for CNC machining (ruvido + finitura), 0.5–1 day for post-processing (painting/anodizing), and 0.5–1 day for assembly and functional testing. Batch production (5+ prototipi) can be shortened to 2–3 days by parallel processing (per esempio., machining multiple parts at once).

Indice
Scorri fino all'inizio