IL CNC machining electric hot water dispenser prototype process is a structured workflow that turns design concepts into physical prototypes, validating appearance, stabilità strutturale, assembly feasibility, and core functions (PER ESEMPIO., riscaldamento, controllo della temperatura, anti-dry burning). This article breaks down the process step-by-step—from preliminary preparation to delivery—using data-driven tables, indicazioni pratiche, and troubleshooting tips to help you overcome key challenges and ensure prototype success.
1. Preparazione preliminare: Define Goals & Select Materials
Preliminary preparation lays the groundwork for the entire machining process. It focuses on clarifying project objectives and choosing materials that meet the electric hot water dispenser’s unique needs (PER ESEMPIO., sicurezza alimentare, Resistenza ad alta temperatura).
1.1 Project Objectives
The core goals of developing an electric hot water dispenser prototype via CNC machining are:
- Verificare appearance design (PER ESEMPIO., shell shape, water level window integration) aligns with brand aesthetics.
- Test razionalità strutturale (PER ESEMPIO., thin-wall shell durability, heating plate installation stability).
- Confirm assembly feasibility (PER ESEMPIO., component fit, wiring space, seal installation).
- Convalidare functional practicality (PER ESEMPIO., heating speed, temperature control accuracy, anti-dry burning response, leak-proof performance).
Why are these goals critical? Ignoring objective alignment can lead to misdirected machining—for example, prioritizing appearance over anti-dry burning safety, which requires 40–50% more rework time and costs.
1.2 Selezione del materiale: Match Properties to Components
Different parts of the electric hot water dispenser demand materials with specific characteristics. The table below compares the most suitable options, along with their uses and processing requirements:
Componente | Materiale | Proprietà chiave | Processing Requirements | Gamma di costi (al kg) |
Body Shell | Lega di alluminio (6061/6063) | Leggero, Facile da macchina, resistente alla corrosione | Anodized (matte black/silver), sandblasted surface (Ra1.6~Ra3.2) | \(6- )10 |
Liner Water Tank | 304 Acciaio inossidabile | Food-grade, high-temperature/corrosion-resistant | Mirror polishing (Ra≤0.2μm), thickness 1.0~1.5mm | \(15- )22 |
Heating Plate | Brass/Aluminum (Plated) | Alta conduttività termica, anti-oxidation | Surface nickel plating, power density matching design specs | \(12- )18 |
Transparent Water Level Window | Scheda in acrilico/PC | Elevata trasparenza, temperature-resistant (-20°C~120°C) | Edge polishing chamfer (R1~R2mm), anti-fog coating | \(8- )12 |
Componenti elettrici | Nylon/POM | Insulated, retardante fiamma, arc-resistant | Used for brackets, button panels; no sharp edges | \(4- )7 |
Sealing Ring | Silicone | Impermeabile, a prova di perdite, high-temperature-resistant (-20°C~200°C) | Seals tank-lid junction; modellato (non lavorato a CNC) | \(9- )13 |
Temperature Control Element | Aluminum Substrate + PTC Thermostat | Alta precisione, anti-dry burning | Embedded installation, accuracy ±1°C | \(10- )15 |
Esempio: IL liner water tank usi 304 stainless steel to meet FDA food safety standards, while the piastra riscaldante chooses brass for its superior thermal conductivity—cutting heating time by 20% compared to regular aluminum.
2. Processo di lavorazione CNC: From Programming to Component Production
The CNC machining phase is the core of prototype creation. It follows a linear workflow: programmazione & process planning → key component machining → surface treatment.
2.1 Programmazione & Process Planning
Precise programming ensures components match design specifications. Usa il software CAM (PER ESEMPIO., Mastercam, PowerMill) to generate toolpaths and set parameters:
- 3D Model Splitting: Divide the prototype into independent parts (conchiglia, liner, base, heating plate bracket) for separate programming.
- Impostazione dei parametri di taglio:
Stadio di lavorazione | Tipo di strumento | Velocità (RPM) | Foraggio (mm/min) | Profondità di taglio (mm) |
Ruvido | Large-diameter flat knife (φ12~φ20mm) | 8000~12000 | 2000~3000 | 1~2 |
Finitura | Small-diameter ball head knife (φ4~φ6mm) | 15000~20000 | 800~1200 | 0.1~0.2 |
Hole Drilling | Drill bit (φ2~φ8mm) + Rubinetto (M3~M6) | 5000~8000 | 500~1000 | N / A (drill to depth) |
- Processi speciali:
- Liner Mirror Polishing: First rough-grind with a CNC grinder, then hand-polish to Ra≤0.2μm (ensures easy cleaning and no water residue).
- Heating Plate Groove: Use five-axis linkage machining for complex curved surfaces (tolleranza ± 0,05 mm) to ensure tight fit with the liner.
2.2 Key Component Machining Tips
Each component requires tailored strategies to avoid defects:
- Body Shell (Thin-Wall <2mm): Aggiungere nervature di processo temporanee durante la lavorazione (removed post-production) per prevenire la deformazione; use symmetrical cutting to reduce internal stress.
- Liner Water Tank: Ensure the bottom surface (contact with heating plate) has flatness ≤0.05mm (maximizes heat transfer efficiency); reserve 0.1~0.2mm thermal expansion gap around the heating plate groove.
- Transparent Water Level Window: Chamfer and polish edges after drilling; attach non-slip rubber strips to prevent scratches during assembly and use.
3. Processo di assemblaggio: Build & Test Functionality
Assembly transforms machined components into a functional prototype. Follow a sequential workflow to ensure accuracy and safety.
3.1 Assemblaggio passo dopo passo
- Core Component Pre-Installation:
- Embed the piastra riscaldante + PTC thermostat into the liner bottom; test heating wire insulation with a 1000V high-voltage test (insulation resistance ≥100MΩ is qualified).
- Montare il water level sensor (float or capacitive type) on the liner side; hide wiring inside the body to avoid interference.
- Enclosure Assembly:
- Secure the body shell with buckles + viti; install the control panel, indicator lights, and buttons (allineare con i fori prelavorati).
- Fix the transparent water level window with silicone sealant (cura per 24 ore) to ensure waterproofing.
- Electrical Connections:
- Connect the circuit board to the heating plate, thermostat, and display screen; protect wires with insulating sleeves (≥3mm distance from the shell to meet safety standards).
3.2 Functional Testing Checklist
Validate the prototype’s performance with targeted tests:
Categoria di prova | Strumenti/Metodi | Passa criteri |
Heating Performance | Thermometer, stopwatch | Heats 1L water from 25°C to 95°C in ≤5 minutes |
Temperature Control Accuracy | Digital thermometer | Actual temperature error ≤±2°C (PER ESEMPIO., 85°C set → 83°C~87°C actual) |
Anti-Dry Burning Protection | Power meter, empty tank test | Automatically cuts power within ≤10 seconds when tank is empty |
Prova di tenuta | Riempimento d'acqua, inverted tank | No leakage after inverting a full tank for 12 ore |
Human-Computer Interaction | Touch tester, brightness meter | Touch response <0.5S; display brightness uniform; alarm light triggers correctly (PER ESEMPIO., low water) |
4. Controllo di qualità & Consegna
Strict quality control ensures the prototype meets standards, while clear delivery terms streamline project handover.
4.1 Quality Control Standards
Testing Item | Utensili | Standard |
Precisione dimensionale | Coordinare la macchina di misurazione (CMM) | Critical dimensions: ± 0,05 mm; Non-critical dimensions: ± 0,1 mm |
Ispezione visiva | 10x Magnifying Glass, Visual Check | No scratches, pozzi, or chromatic aberration; edge chamfering uniform |
Assembly Verification | Torque Wrench | Screw torque meets specs (PER ESEMPIO., M3 screws: 10~12N·m) |
Electrical Safety | Insulation Resistance Tester | Insulation resistance ≥100MΩ; withstands 1000V voltage test |
4.2 Delivery Details
Articolo | Descrizione |
Deliverables | 1 fully assembled prototype, 2 spare sealing rings, 1 test report (with heating curves/leakage data), 1 operation video |
Processing Cycle | 10~15 working days (includes material preparation, lavorazione, Trattamento superficiale, assemblaggio, Test) |
Reference Cost | \(1,200~ )2,200 (varies by material complexity and process requirements) |
La prospettiva della tecnologia Yigu
Alla tecnologia Yigu, Vediamo il CNC machining electric hot water dispenser prototype process come a “safety validator”—it identifies design flaws early to avoid mass production risks. Il nostro team dà priorità a due pilastri: precisione e sicurezza. For liners, Usiamo 304 stainless steel with mirror polishing (Ra≤0.2μm) to meet global food standards. For heating systems, we reserve 0.1~0.2mm thermal expansion gaps to prevent high-temperature deformation. Integriamo anche la scansione 3D post-lavorazione per verificare l'accuratezza dimensionale (± 0,03 mm), riducendo i tassi di rilavorazione 25%. Concentrandosi su questi dettagli, we help clients reduce time-to-market by 1~2 weeks. Che tu abbia bisogno di un prototipo estetico o funzionale, we tailor solutions to meet electrical safety standards (PER ESEMPIO., IEC 60335).
Domande frequenti
- Q: How long does the entire CNC machining electric hot water dispenser prototype process take?
UN: Typically 10~15 working days. This includes 1~2 days for preparation, 3~4 days for machining, 1~2 days for surface treatment, 2~3 days for assembly, and 1~2 days for testing/quality control.
- Q: Posso sostituire 304 stainless steel with aluminum alloy for the liner water tank?
UN: NO. Aluminum alloy is not food-safe for direct water contact (may leach metals into hot water) and lacks 304 stainless steel’s corrosion resistance. Using aluminum alloy would fail FDA/EC 1935 standards and require full prototype rework.
- Q: What causes slow heating, and how to fix it?
UN: Common causes are poor contact between the heating plate and liner (planarità >0.05mm) or low heating plate power density. Correzioni: Re-polish the liner bottom to flatness ≤0.05mm; replace the heating plate with one that matches design power density (PER ESEMPIO., 1500W for 1L tanks). This resolves slow heating in 1~2 hours.