What Is the Professional CNC Machining Electric Fan Prototype Process?

polyester pbt injection molding

IL CNC machining electric fan prototype process is a systematic workflow that transforms design concepts into physical prototypes, convalidare l'autenticità dell'aspetto, stabilità strutturale, airflow efficiency, e logica funzionale fondamentale (PER ESEMPIO., head-shaking smoothness, controllo del rumore). Questo articolo analizza il processo passo dopo passo, dalla progettazione preliminare al debug finale, utilizzando tabelle basate sui dati, indicazioni pratiche, e suggerimenti per la risoluzione dei problemi per aiutarti ad affrontare le sfide principali e garantire il successo del prototipo.

1. Preparazione preliminare: Definire i requisiti & Posare le basi

Preliminary preparation sets the direction for the entire prototype development. Si concentra su due compiti fondamentali: requirements analysis & design concettuale E 3D Modellazione & structural detailing, both tailored to the unique needs of electric fans (PER ESEMPIO., silent operation for bedrooms, stability for floor fans).

1.1 Requirements Analysis & Design concettuale

Before starting machining, clarify functional and appearance requirements to avoid misaligned development goals.

  • Chiarimento dei requisiti funzionali:
Tipo di ventolaFocus funzionale principaleEsempio di specifiche chiave
Ventilatore da pavimentoGamma da scuotere la testa, stabilità, flusso d'aria elevatoAngolo di scuotimento della testa: 60°–90°; Peso base ≥2 kg
Ventilatore da tavoloFunzionamento silenzioso, dimensioni compatte, bassa potenzaRumore ≤40 dB; Dimensioni ≤300×300×400mm; Potenza ≤30W
Ventilatore da soffittoCapacità portante, flusso d'aria uniformeCapacità di carico ≥5 kg; Copertura del flusso d'aria ≥15m²
  • Progettazione concettuale dell'aspetto:
  • Crea schizzi preliminari o bozze 3D utilizzando strumenti come Sketchup O Rinoceronte, considerando:
  • Coordinazione estetica: Bordi arrotondati (raggio 3–5 mm) per i fan della casa che si adattano all'arredamento della casa; forme geometriche per ventilatori industriali.
  • Human-Computer Interaction: Button/knob layout (PER ESEMPIO., 3 wind-speed buttons on the fan head for easy reach); indicator light positions (visible but not glaring).
  • Environmental Adaptation: Dust-proof grilles for industrial fans; anti-slip base pads for table fans.

Why is this important? Skipping requirement clarification can lead to rework—for example, a bedroom fan prototype without silent design may need 25% more time to optimize fan blade curvature and motor mounting.

1.2 3D Modellazione & Structural Detailing

Use professional CAD software to translate concepts into precise models, ensuring processability for CNC machining.

  • Selezione del software: Priorità Solidworks, E nx, O Per/e—they support parametric design, allowing easy adjustment of dimensions (PER ESEMPIO., fan blade length, base diameter) and compatibility with CAM software.
  • Core Structural Design:
  1. Ripartizione dei componenti: Split the fan into parts like alloggio, fan blades, staffa motore, base, E pannello di controllo for separate machining.
  2. Key Structure Optimization:
  • Housing: Determine material thickness (1–3mm for plastic, 2–4mm for metal) and assembly structures (scatta, M2–M3 screw holes with ±0.1mm tolerance).
  • Fan Blades: Design curved surfaces and angles (15°–25° attack angle) to balance airflow and noise; ensure blade weight difference ≤0.5g for anti-jitter.
  • Base: Add weighted blocks or counterweight structures (PER ESEMPIO., 1kg metal plate in plastic bases) to improve stability; integrate rubber anti-slip pads (thickness 2–3mm).
  • Head-Shaking Mechanism: For floor/table fans, design gear or connecting rod structures (gear module: 0.5–1mm) to ensure smooth left-right swinging.
  1. Detail Features: Add brand logos (embossed height 0.8–1mm), buchi di dissipazione del calore (diameter 2–3mm, grid pattern), and button icons (silk-screen ready).

2. Selezione del materiale & Process Planning: Match Materials to Functions

Choosing the right materials and defining machining strategies are critical for prototype performance. This phase follows amaterial selection → parameter setting → sequence planning” flusso di lavoro.

2.1 Selezione del materiale: Balance Performance & Costo

Different components require materials with specific properties (PER ESEMPIO., lightweight for fan blades, durability for bases). The table below compares suitable options:

ComponenteMateriale consigliatoProprietà chiaveVantaggi di elaborazioneGamma di costi (al kg)
HousingPlastica addominali / Lega di alluminioPlastica: Leggero, basso costo; Metallo: DurevolePlastica: Easy cutting; Metallo: Good for anodization\(3- )6 (Addominali); \(6- )10 (Alluminio)
Fan BladesPlastica addominali / Lega di alluminioPlastica: Low noise; Metallo: Alta resistenzaPlastica: No burrs; Metallo: Suitable for curved machining\(3- )6 (Addominali); \(6- )10 (Alluminio)
BasePlastica addominali / GhisaPlastica: Leggero; Ghisa: High stabilityPlastica: Fast machining; Ghisa: Good for weighting\(3- )6 (Addominali); \(8- )12 (Ghisa)
Motor BracketLega di alluminio (6061)Alta resistenza, heat dissipationFacile da macchina; Anodization-friendly\(6- )10
Pannello di controlloAddominali + PC BlendResistenza all'ambiente, isolamentoSmooth surface for silk-screen\(4- )7

Esempio: Bedroom table fan blades use ABS plastic (low noise, leggero), while industrial floor fan blades use aluminum alloy (high strength for heavy-duty use).

2.2 Process Planning: Define Machining Strategies

Clear process planning ensures efficient and precise CNC machining.

  • Tool Selection by Material & Compito:
MaterialeMachining TaskTipo di strumentoSpecifiche
Plastica (Addominali)RuvidoCarbide Flat-End MillΦ6–10mm, 2–3 teeth
Plastica (Addominali)FinituraCarbide Ball-Nose MillΦ2–4mm, 4–6 teeth
Lega di alluminioRuvidoCarbide End MillΦ4–6mm, 2 denti
Lega di alluminioFinituraCoated Carbide CutterΦ3–5mm, 4 denti
  • Impostazione dei parametri di taglio:
MaterialeStadio di lavorazioneVelocità (RPM)Velocità di alimentazione (mm/dente)Profondità di taglio (mm)Refrigerante
Plastica addominaliRuvido300–6000.2–0,50.5–2Aria compressa
Plastica addominaliFinitura800–15000.1–0,20.1–0,3Aria compressa
Lega di alluminioRuvido1500–25000.1–0,31–3Emulsione
Lega di alluminioFinitura2500–40000.05–0,10.05–0,1Emulsione
  • Machining Sequence:
  1. Process large parts first (base, alloggio) to avoid collision with small parts.
  2. Machine complex curved surfaces (fan blades) in layers (0.5–1mm per layer) to ensure shape accuracy.
  3. Finish small precision parts (motor brackets, pulsanti del pannello di controllo) last to prevent damage.

3. Esecuzione di lavorazione a CNC: Turn Models into Components

This phase is the core of prototype creation, following amachine preparation → roughing → semi-finishing → finishingworkflow to ensure component precision.

3.1 Machine Preparation & Programmazione

Proper setup lays the groundwork for error-free machining.

  • Machine Selection:
  • Most electric fan parts (alloggio, lame) can be processed with a 3-fresatrice CNC ad assi (precisione di posizionamento ±0,01 mm).
  • Per pale di ventilatori con superfici curve a spirale, Usa un 5-macchina CNC ad assi o una testa indicizzata per ottenere lavorazioni multiangolo.
  • Programmazione & Calibrazione:
  1. Importa modelli 3D nel software CAM (PER ESEMPIO., Mastercam, PowerMill) per generare percorsi utensile.
  2. Impostare i sistemi di coordinate di lavorazione e i piani di sicurezza (5–10 mm sopra il pezzo) per evitare la collisione dell'utensile.
  3. Materiali del morsetto (piatti di plastica, blocchi di alluminio) e calibrare il punto zero utilizzando un tastatore (precisione ±0,005 mm).

3.2 Ruvido & Semifinishing: Shape the Basic Form

  • Ruvido:
  • Remove 80–90% of excess material to approach the component’s basic shape.
  • For plastic housing: Mill the outer contour first, then dig the internal cavity to avoid material collapse.
  • For metal base: Use a large-diameter cutter (Φ8–10mm) to quickly remove allowance; clean chips in real time to prevent scratches.
  • Semifinishing:
  • Correct roughing deviations and leave a 0.1–0.2mm allowance for finishing.
  • Focus on key structures:
  • Fan blade curved surfaces: Ensure smooth transitions between layers.
  • Motor bracket holes: Pre-drill to 90% of the final diameter for precise tapping later.

3.3 Finitura: Ottieni precisione & Qualità della superficie

Finishing determines the prototype’s appearance and functional performance.

  • Surface Quality Requirements:
ComponenteRugosità superficialeMetodo di elaborazione
Plastic HousingRA ≤0,8μmPolishing with 800–1200 mesh sandpaper
Metal BladesRa ≤0.4μmSabbiatura + lucidare; edge chamfering (R0.5mm)
Pannello di controlloRA ≤1,6μmCoating with anti-scratch film after machining
  • Special Structure Machining:
  • Head-Shaking Mechanism: Machine gear grooves or connecting rod holes with high precision (tolleranza ±0,03 mm) to ensure smooth movement.
  • Fan Blade Mounting Holes: Drill and tap M3–M4 threads; ensure coaxiality with the motor shaft (error ≤0.02mm) to avoid jitter.

4. Post-elaborazione & Assemblaggio: Migliora le prestazioni & Estetica

Post-processing removes flaws and prepares components for assembly, while careful assembly ensures the prototype functions as intended.

4.1 Post-elaborazione: Improve Appearance & Durata

  • Sfacciato & Pulizia:
  • Plastic Parts: Use a blade to remove burrs; clean with isopropyl alcohol to eliminate oil residue.
  • Parti metalliche: Sand with 400–800 mesh sandpaper; per alluminio, use a wire brush to remove oxidation.
  • Trattamento superficiale:
ComponenteMetodo di trattamentoScopo
Plastic HousingSpray matte/glossy paint; hot-stamp brand logosMigliora l'estetica; prevent scratches
Aluminum BladesAnodizzazione (nero/argento); anti-rust coatingMigliorare la resistenza alla corrosione; add texture
Pannello di controlloSilk-screen buttons/icons; spray insulating paintEnsure visibility; prevent electrical leakage
  • Functional Enhancement:
  • Attach rubber anti-slip pads to the base (adhesive strength ≥5N/cm²).
  • Install waterproof membranes on the control panel to prevent dust/water ingress.

4.2 Assemblaggio & Debug: Validate Functionality

Follow a sequential assembly order to avoid rework and ensure functional reliability.

  1. Pre-Assembly Check: Verify all parts meet specs (PER ESEMPIO., fan blade weight balance, screw hole alignment).
  2. Core Component Assembly:
  • Mount the motor to the bracket (use M3 screws, coppia: 1.0–1,5 Nm).
  • Install fan blades onto the motor shaft (ensure tight fit; no axial movement).
  • Assemble the base and housing (use snaps or screws; check stability—tilt angle ≤5° without tipping).
  1. Functional Debugging:

|

Test ItemStrumenti/MetodiPassa criteri
Airflow EfficiencyAnemometer, measured at a distance of 1 meter from the fanFloor fan: Minimum of 5 m/s on high gearTable fan: Minimum of 3 m/s on high gear
Head-Shaking FunctionProtractor and stopwatchOscillation angle: 60°–90°, as per design specificationsSmooth operation without jitterCompletion of one oscillation cycle within 10 seconds or less
Noise LevelSound level meter, measured at 1 meter in a quiet environmentHousehold fans: Massimo 40 db – Industrial fans: Massimo 55 db
Safety PerformanceForce gauge (for grille protection testing), Insulation tester (for power cord testing)Grille gap: 5 mm o meno (ensuring fingertips cannot reach the blades) – Insulation resistance: 100 MΩ or higher

5. Casi di applicazione: Tailor Processes to Fan Types

Different fan types require adjusted processes to meet their unique needs.

5.1 Household Table Fan Prototype

  • Messa a fuoco: Silent operation and compact size.
  • Process Adjustments:
  • Use ABS plastic for blades (low noise) and optimize curvature to reduce wind turbulence.
  • Test 2–3 color schemes (bianco, light gray) via spray painting to verify user preferences.
  • Prototype Value: Validate if the size (≤300×300×400mm) fits nightstands and if noise (≤35dB) avoids disturbing sleep.

5.2 Industrial Floor Fan Prototype

  • Messa a fuoco: Durability and high airflow.
  • Process Adjustments:
  • Use aluminum alloy for blades and housing (alta resistenza); anodize to resist corrosion in dusty environments.
  • Add reinforced ribs to the motor bracket (thickness 2mm) to support high-power motors (≥50W).
  • Prototype Value: Conduct 72-hour continuous operation tests; simulate high-temperature (40° C.) environments to check component reliability.

La prospettiva della tecnologia Yigu

Alla tecnologia Yigu, Vediamo il CNC machining electric fan prototype process come a “validatore di funzionalità”—it turns design ideas into tangible products while identifying flaws like jitter or excessive noise early. Il nostro team dà priorità a due pilastri: precision and practicality. For fan blades, we use 5-axis machining to ensure curvature accuracy (± 0,03 mm) and weight balance (difference ≤0.3g) for silent operation. For bases, we optimize counterweight structures and anti-slip pads to meet stability standards. Integriamo anche la scansione 3D post-lavorazione per verificare l'accuratezza dimensionale, riducendo i tassi di rilavorazione 25%. Concentrandosi su questi dettagli, aiutiamo i clienti a ridurre il time-to-market di 1–2 settimane. Whether you need a household or industrial fan prototype, we tailor solutions to your performance goals.

Domande frequenti

  1. Q: How long does the entire CNC machining electric fan prototype process take?

UN: Normalmente 8-12 giorni lavorativi. Ciò include 1–2 giorni per la preparazione (progetto, Selezione del materiale), 3–4 giorni per lavorazioni CNC, 1–2 giorni per la post-elaborazione, 1–2 giorni per il montaggio, E 1 day for debugging/inspection.

  1. Q: Can I use plastic instead of aluminum alloy for industrial fan blades?

UN: Non è consigliato. Industrial fans require high airflow and heavy-duty use—plastic blades may deform under long-term high-speed rotation (≥1500rpm) or break in dusty environments. Aluminum alloy blades offer better strength and heat dissipation, making them suitable for industrial scenarios.

  1. Q: What causes fan jitter during operation, and how to fix it?

UN: Common causes are uneven fan blade weight (differenza >0.5G) or misaligned motor shaft mounting (coaxiality error >0.02mm). Correzioni: Re-balance blades by grinding excess material (reduce weight difference to ≤0.3g); re-machine the motor bracket to correct shaft alignment (coaxiality ≤0.02mm). This resolves 90% of jitter issues in 1–2 hours.

Indice
Scorri fino all'alto