IL CNC machining electric fan prototype process is a systematic workflow that transforms design concepts into physical prototypes, convalidare l'autenticità dell'aspetto, stabilità strutturale, airflow efficiency, e logica funzionale fondamentale (PER ESEMPIO., head-shaking smoothness, controllo del rumore). Questo articolo analizza il processo passo dopo passo, dalla progettazione preliminare al debug finale, utilizzando tabelle basate sui dati, indicazioni pratiche, e suggerimenti per la risoluzione dei problemi per aiutarti ad affrontare le sfide principali e garantire il successo del prototipo.
1. Preparazione preliminare: Definire i requisiti & Posare le basi
Preliminary preparation sets the direction for the entire prototype development. Si concentra su due compiti fondamentali: requirements analysis & design concettuale E 3D Modellazione & structural detailing, both tailored to the unique needs of electric fans (PER ESEMPIO., silent operation for bedrooms, stability for floor fans).
1.1 Requirements Analysis & Design concettuale
Before starting machining, clarify functional and appearance requirements to avoid misaligned development goals.
- Chiarimento dei requisiti funzionali:
Tipo di ventola | Focus funzionale principale | Esempio di specifiche chiave |
Ventilatore da pavimento | Gamma da scuotere la testa, stabilità, flusso d'aria elevato | Angolo di scuotimento della testa: 60°–90°; Peso base ≥2 kg |
Ventilatore da tavolo | Funzionamento silenzioso, dimensioni compatte, bassa potenza | Rumore ≤40 dB; Dimensioni ≤300×300×400mm; Potenza ≤30W |
Ventilatore da soffitto | Capacità portante, flusso d'aria uniforme | Capacità di carico ≥5 kg; Copertura del flusso d'aria ≥15m² |
- Progettazione concettuale dell'aspetto:
- Crea schizzi preliminari o bozze 3D utilizzando strumenti come Sketchup O Rinoceronte, considerando:
- Coordinazione estetica: Bordi arrotondati (raggio 3–5 mm) per i fan della casa che si adattano all'arredamento della casa; forme geometriche per ventilatori industriali.
- Human-Computer Interaction: Button/knob layout (PER ESEMPIO., 3 wind-speed buttons on the fan head for easy reach); indicator light positions (visible but not glaring).
- Environmental Adaptation: Dust-proof grilles for industrial fans; anti-slip base pads for table fans.
Why is this important? Skipping requirement clarification can lead to rework—for example, a bedroom fan prototype without silent design may need 25% more time to optimize fan blade curvature and motor mounting.
1.2 3D Modellazione & Structural Detailing
Use professional CAD software to translate concepts into precise models, ensuring processability for CNC machining.
- Selezione del software: Priorità Solidworks, E nx, O Per/e—they support parametric design, allowing easy adjustment of dimensions (PER ESEMPIO., fan blade length, base diameter) and compatibility with CAM software.
- Core Structural Design:
- Ripartizione dei componenti: Split the fan into parts like alloggio, fan blades, staffa motore, base, E pannello di controllo for separate machining.
- Key Structure Optimization:
- Housing: Determine material thickness (1–3mm for plastic, 2–4mm for metal) and assembly structures (scatta, M2–M3 screw holes with ±0.1mm tolerance).
- Fan Blades: Design curved surfaces and angles (15°–25° attack angle) to balance airflow and noise; ensure blade weight difference ≤0.5g for anti-jitter.
- Base: Add weighted blocks or counterweight structures (PER ESEMPIO., 1kg metal plate in plastic bases) to improve stability; integrate rubber anti-slip pads (thickness 2–3mm).
- Head-Shaking Mechanism: For floor/table fans, design gear or connecting rod structures (gear module: 0.5–1mm) to ensure smooth left-right swinging.
- Detail Features: Add brand logos (embossed height 0.8–1mm), buchi di dissipazione del calore (diameter 2–3mm, grid pattern), and button icons (silk-screen ready).
2. Selezione del materiale & Process Planning: Match Materials to Functions
Choosing the right materials and defining machining strategies are critical for prototype performance. This phase follows a “material selection → parameter setting → sequence planning” flusso di lavoro.
2.1 Selezione del materiale: Balance Performance & Costo
Different components require materials with specific properties (PER ESEMPIO., lightweight for fan blades, durability for bases). The table below compares suitable options:
Componente | Materiale consigliato | Proprietà chiave | Vantaggi di elaborazione | Gamma di costi (al kg) |
Housing | Plastica addominali / Lega di alluminio | Plastica: Leggero, basso costo; Metallo: Durevole | Plastica: Easy cutting; Metallo: Good for anodization | \(3- )6 (Addominali); \(6- )10 (Alluminio) |
Fan Blades | Plastica addominali / Lega di alluminio | Plastica: Low noise; Metallo: Alta resistenza | Plastica: No burrs; Metallo: Suitable for curved machining | \(3- )6 (Addominali); \(6- )10 (Alluminio) |
Base | Plastica addominali / Ghisa | Plastica: Leggero; Ghisa: High stability | Plastica: Fast machining; Ghisa: Good for weighting | \(3- )6 (Addominali); \(8- )12 (Ghisa) |
Motor Bracket | Lega di alluminio (6061) | Alta resistenza, heat dissipation | Facile da macchina; Anodization-friendly | \(6- )10 |
Pannello di controllo | Addominali + PC Blend | Resistenza all'ambiente, isolamento | Smooth surface for silk-screen | \(4- )7 |
Esempio: Bedroom table fan blades use ABS plastic (low noise, leggero), while industrial floor fan blades use aluminum alloy (high strength for heavy-duty use).
2.2 Process Planning: Define Machining Strategies
Clear process planning ensures efficient and precise CNC machining.
- Tool Selection by Material & Compito:
Materiale | Machining Task | Tipo di strumento | Specifiche |
Plastica (Addominali) | Ruvido | Carbide Flat-End Mill | Φ6–10mm, 2–3 teeth |
Plastica (Addominali) | Finitura | Carbide Ball-Nose Mill | Φ2–4mm, 4–6 teeth |
Lega di alluminio | Ruvido | Carbide End Mill | Φ4–6mm, 2 denti |
Lega di alluminio | Finitura | Coated Carbide Cutter | Φ3–5mm, 4 denti |
- Impostazione dei parametri di taglio:
Materiale | Stadio di lavorazione | Velocità (RPM) | Velocità di alimentazione (mm/dente) | Profondità di taglio (mm) | Refrigerante |
Plastica addominali | Ruvido | 300–600 | 0.2–0,5 | 0.5–2 | Aria compressa |
Plastica addominali | Finitura | 800–1500 | 0.1–0,2 | 0.1–0,3 | Aria compressa |
Lega di alluminio | Ruvido | 1500–2500 | 0.1–0,3 | 1–3 | Emulsione |
Lega di alluminio | Finitura | 2500–4000 | 0.05–0,1 | 0.05–0,1 | Emulsione |
- Machining Sequence:
- Process large parts first (base, alloggio) to avoid collision with small parts.
- Machine complex curved surfaces (fan blades) in layers (0.5–1mm per layer) to ensure shape accuracy.
- Finish small precision parts (motor brackets, pulsanti del pannello di controllo) last to prevent damage.
3. Esecuzione di lavorazione a CNC: Turn Models into Components
This phase is the core of prototype creation, following a “machine preparation → roughing → semi-finishing → finishing” workflow to ensure component precision.
3.1 Machine Preparation & Programmazione
Proper setup lays the groundwork for error-free machining.
- Machine Selection:
- Most electric fan parts (alloggio, lame) can be processed with a 3-fresatrice CNC ad assi (precisione di posizionamento ±0,01 mm).
- Per pale di ventilatori con superfici curve a spirale, Usa un 5-macchina CNC ad assi o una testa indicizzata per ottenere lavorazioni multiangolo.
- Programmazione & Calibrazione:
- Importa modelli 3D nel software CAM (PER ESEMPIO., Mastercam, PowerMill) per generare percorsi utensile.
- Impostare i sistemi di coordinate di lavorazione e i piani di sicurezza (5–10 mm sopra il pezzo) per evitare la collisione dell'utensile.
- Materiali del morsetto (piatti di plastica, blocchi di alluminio) e calibrare il punto zero utilizzando un tastatore (precisione ±0,005 mm).
3.2 Ruvido & Semifinishing: Shape the Basic Form
- Ruvido:
- Remove 80–90% of excess material to approach the component’s basic shape.
- For plastic housing: Mill the outer contour first, then dig the internal cavity to avoid material collapse.
- For metal base: Use a large-diameter cutter (Φ8–10mm) to quickly remove allowance; clean chips in real time to prevent scratches.
- Semifinishing:
- Correct roughing deviations and leave a 0.1–0.2mm allowance for finishing.
- Focus on key structures:
- Fan blade curved surfaces: Ensure smooth transitions between layers.
- Motor bracket holes: Pre-drill to 90% of the final diameter for precise tapping later.
3.3 Finitura: Ottieni precisione & Qualità della superficie
Finishing determines the prototype’s appearance and functional performance.
- Surface Quality Requirements:
Componente | Rugosità superficiale | Metodo di elaborazione |
Plastic Housing | RA ≤0,8μm | Polishing with 800–1200 mesh sandpaper |
Metal Blades | Ra ≤0.4μm | Sabbiatura + lucidare; edge chamfering (R0.5mm) |
Pannello di controllo | RA ≤1,6μm | Coating with anti-scratch film after machining |
- Special Structure Machining:
- Head-Shaking Mechanism: Machine gear grooves or connecting rod holes with high precision (tolleranza ±0,03 mm) to ensure smooth movement.
- Fan Blade Mounting Holes: Drill and tap M3–M4 threads; ensure coaxiality with the motor shaft (error ≤0.02mm) to avoid jitter.
4. Post-elaborazione & Assemblaggio: Migliora le prestazioni & Estetica
Post-processing removes flaws and prepares components for assembly, while careful assembly ensures the prototype functions as intended.
4.1 Post-elaborazione: Improve Appearance & Durata
- Sfacciato & Pulizia:
- Plastic Parts: Use a blade to remove burrs; clean with isopropyl alcohol to eliminate oil residue.
- Parti metalliche: Sand with 400–800 mesh sandpaper; per alluminio, use a wire brush to remove oxidation.
- Trattamento superficiale:
Componente | Metodo di trattamento | Scopo |
Plastic Housing | Spray matte/glossy paint; hot-stamp brand logos | Migliora l'estetica; prevent scratches |
Aluminum Blades | Anodizzazione (nero/argento); anti-rust coating | Migliorare la resistenza alla corrosione; add texture |
Pannello di controllo | Silk-screen buttons/icons; spray insulating paint | Ensure visibility; prevent electrical leakage |
- Functional Enhancement:
- Attach rubber anti-slip pads to the base (adhesive strength ≥5N/cm²).
- Install waterproof membranes on the control panel to prevent dust/water ingress.
4.2 Assemblaggio & Debug: Validate Functionality
Follow a sequential assembly order to avoid rework and ensure functional reliability.
- Pre-Assembly Check: Verify all parts meet specs (PER ESEMPIO., fan blade weight balance, screw hole alignment).
- Core Component Assembly:
- Mount the motor to the bracket (use M3 screws, coppia: 1.0–1,5 Nm).
- Install fan blades onto the motor shaft (ensure tight fit; no axial movement).
- Assemble the base and housing (use snaps or screws; check stability—tilt angle ≤5° without tipping).
- Functional Debugging:
|
Test Item | Strumenti/Metodi | Passa criteri |
Airflow Efficiency | Anemometer, measured at a distance of 1 meter from the fan | – Floor fan: Minimum of 5 m/s on high gear – Table fan: Minimum of 3 m/s on high gear |
Head-Shaking Function | Protractor and stopwatch | – Oscillation angle: 60°–90°, as per design specifications – Smooth operation without jitter – Completion of one oscillation cycle within 10 seconds or less |
Noise Level | Sound level meter, measured at 1 meter in a quiet environment | – Household fans: Massimo 40 db – Industrial fans: Massimo 55 db |
Safety Performance | Force gauge (for grille protection testing), Insulation tester (for power cord testing) | – Grille gap: 5 mm o meno (ensuring fingertips cannot reach the blades) – Insulation resistance: 100 MΩ or higher |
5. Casi di applicazione: Tailor Processes to Fan Types
Different fan types require adjusted processes to meet their unique needs.
5.1 Household Table Fan Prototype
- Messa a fuoco: Silent operation and compact size.
- Process Adjustments:
- Use ABS plastic for blades (low noise) and optimize curvature to reduce wind turbulence.
- Test 2–3 color schemes (bianco, light gray) via spray painting to verify user preferences.
- Prototype Value: Validate if the size (≤300×300×400mm) fits nightstands and if noise (≤35dB) avoids disturbing sleep.
5.2 Industrial Floor Fan Prototype
- Messa a fuoco: Durability and high airflow.
- Process Adjustments:
- Use aluminum alloy for blades and housing (alta resistenza); anodize to resist corrosion in dusty environments.
- Add reinforced ribs to the motor bracket (thickness 2mm) to support high-power motors (≥50W).
- Prototype Value: Conduct 72-hour continuous operation tests; simulate high-temperature (40° C.) environments to check component reliability.
La prospettiva della tecnologia Yigu
Alla tecnologia Yigu, Vediamo il CNC machining electric fan prototype process come a “validatore di funzionalità”—it turns design ideas into tangible products while identifying flaws like jitter or excessive noise early. Il nostro team dà priorità a due pilastri: precision and practicality. For fan blades, we use 5-axis machining to ensure curvature accuracy (± 0,03 mm) and weight balance (difference ≤0.3g) for silent operation. For bases, we optimize counterweight structures and anti-slip pads to meet stability standards. Integriamo anche la scansione 3D post-lavorazione per verificare l'accuratezza dimensionale, riducendo i tassi di rilavorazione 25%. Concentrandosi su questi dettagli, aiutiamo i clienti a ridurre il time-to-market di 1–2 settimane. Whether you need a household or industrial fan prototype, we tailor solutions to your performance goals.
Domande frequenti
- Q: How long does the entire CNC machining electric fan prototype process take?
UN: Normalmente 8-12 giorni lavorativi. Ciò include 1–2 giorni per la preparazione (progetto, Selezione del materiale), 3–4 giorni per lavorazioni CNC, 1–2 giorni per la post-elaborazione, 1–2 giorni per il montaggio, E 1 day for debugging/inspection.
- Q: Can I use plastic instead of aluminum alloy for industrial fan blades?
UN: Non è consigliato. Industrial fans require high airflow and heavy-duty use—plastic blades may deform under long-term high-speed rotation (≥1500rpm) or break in dusty environments. Aluminum alloy blades offer better strength and heat dissipation, making them suitable for industrial scenarios.
- Q: What causes fan jitter during operation, and how to fix it?
UN: Common causes are uneven fan blade weight (differenza >0.5G) or misaligned motor shaft mounting (coaxiality error >0.02mm). Correzioni: Re-balance blades by grinding excess material (reduce weight difference to ≤0.3g); re-machine the motor bracket to correct shaft alignment (coaxiality ≤0.02mm). This resolves 90% of jitter issues in 1–2 hours.