IL CNC machining air conditioning prototype process è un flusso di lavoro sistematico che trasforma i concetti di progettazione del condizionamento dell'aria in prototipi fisici, convalidare l'autenticità dell'aspetto, razionalità strutturale, efficienza dello scambio termico, e logica funzionale fondamentale (PER ESEMPIO., uniformità del flusso d'aria, controllo del rumore). Questo articolo analizza il processo passo dopo passo, dalla progettazione preliminare al debug finale, utilizzando tabelle basate sui dati, indicazioni pratiche, e suggerimenti per la risoluzione dei problemi per aiutarti ad affrontare le sfide principali e garantire il successo del prototipo.
1. Preparazione preliminare: Definire i requisiti & Lay the Design Foundation
Preliminary preparation sets the direction for the entire prototype development. Si concentra su due compiti fondamentali: requirements analysis & design concettuale E 3D Modellazione & structural detailing, both tailored to the unique needs of different air conditioning types (PER ESEMPIO., compact structure for wall-mounted AC, multi-directional airflow for central AC).
1.1 Requirements Analysis & Design concettuale
Before starting machining, clarify functional and appearance requirements to avoid misaligned development goals—this step reduces rework risk by 30% in media.
1.1.1 Chiarimento dei requisiti funzionali
Different AC types have distinct functional priorities. The table below outlines key specs for common models:
AC Type | Focus funzionale principale | Esempio di specifiche chiave |
Wall-Mounted AC | Compact indoor unit, efficient heat exchange | Cooling capacity: 2–3.5kW; Rumore (indoor unit): ≤30dB; Indoor unit thickness ≤180mm |
Vertical AC | Large airflow, stable base | Cooling capacity: 3.5–5kW; Air supply range: 0°–90° (up/down swing); Base weight ≥30kg |
Central AC Outlet | Multi-directional airflow, compatibilità | Airflow uniformity: ±5% variation; Swing angle (sinistra/destra): 0°–120°; Material corrosion resistance |
1.1.2 Progettazione concettuale dell'aspetto
Crea schizzi preliminari o bozze 3D utilizzando strumenti come Sketchup O Rinoceronte, with three key considerations:
- Coordinazione estetica: Wall-mounted ACs use slim, curved lines (radius 8–12mm) to fit home walls; vertical ACs adopt cylindrical or rectangular shapes for living room decor.
- Human-Computer Interaction: Place displays and buttons at eye level (1.5–1.8m from the ground for wall-mounted ACs); use touch-sensitive or physical knobs with clear icons.
- Environmental Adaptation: Add dust filters (removable design for easy cleaning) and drainage ports (positioned to avoid water leakage); use anti-mildew materials for high-humidity areas.
1.2 3D Modellazione & Structural Detailing
Use professional CAD software to translate concepts into precise models, ensuring processability for CNC machining.
1.2.1 Selezione del software & Core Structural Design
- Scelta del software: Priorità Solidworks, E nx, O Per/e—they support parametric design, allowing easy adjustment of dimensions (PER ESEMPIO., evaporator size, air duct width) and compatibility with CAM software.
- Ripartizione dei componenti: Split the AC into parts like indoor/outdoor unit housing, componenti del condotto dell'aria (deflectors, volutes), dissipatori di calore, motor brackets, E pannelli di controllo for separate machining.
- Key Structure Optimization:
- Housing: Determine material thickness (1–3mm for plastic, 0.8–1.5mm for aluminum alloy) and assembly structures (scatta, M3–M4 screw holes with ±0.1mm tolerance).
- Air Ducts: For wall-mounted ACs, optimize airflow paths to reduce turbulence (PER ESEMPIO., curved volutes with 5°–10° expansion angle); for central AC outlets, design multi-layer deflectors for uniform air distribution.
- Heat Sinks: Design fin density (0.5–1mm spacing) e forma (wavy or louvered) based on heat exchange efficiency—wavy fins improve heat dissipation by 15% compared to flat fins.
- Detail Features: Add brand logos (embossed height 0.8–1mm), indicator light holes (diameter 3–5mm), and filter mounting grooves (depth 5–8mm, tolleranza ± 0,05 mm).
2. Selezione del materiale & Process Planning: Match Materials to Performance Needs
Choosing the right materials and defining machining strategies are critical for prototype performance. This phase follows a “material selection → parameter setting → sequence planning” workflow to ensure efficiency and precision.
2.1 Selezione del materiale: Balance Performance, Costo, and Processability
Different AC components require materials with specific properties (PER ESEMPIO., thermal conductivity for heat sinks, corrosion resistance for outdoor units). The table below compares suitable options:
Componente | Materiale consigliato | Proprietà chiave | Vantaggi di elaborazione | Gamma di costi (al kg) |
Indoor Unit Housing | Plastica addominali / PC Blend | Leggero, resistente all'impatto, low noise transmission | Facile da tagliare; smooth surface for painting | \(3- )6 |
Outdoor Unit Housing | Lega di alluminio (6061) / Acciaio inossidabile (304) | Resistente alla corrosione, durevole, resistente alle intemperie | Good for anodization; high strength for outdoor use | \(6- )10 (Alluminio); \(15- )22 (SS) |
Air Duct Components | Plastica addominali / Lega di alluminio | Alta rigidità, stabilità dimensionale buona | Plastica: No burrs; Metallo: Suitable for curved machining | \(3- )6 (Plastica); \(6- )10 (Metallo) |
Heat Sinks | Lega di alluminio (1050) / Rame | Eccellente conduttività termica (Al: 220 W/m · k; Cu: 401 W/m · k) | Fast machining; easy to form fins | \(5- )8 (Alluminio); \(18- )25 (Rame) |
Control Panels | Addominali + PC Blend | Isolamento, Resistenza all'ambiente, smooth surface for silk-screen | Compatible with touch-sensitive film installation | \(4- )7 |
Esempio: Wall-mounted AC heat sinks use aluminum alloy (economico, leggero), while high-end central AC heat sinks use copper (superior thermal conductivity) for large cooling capacity.
2.2 Process Planning: Define CNC Machining Strategies
Clear process planning ensures efficient and precise machining, Ridurre i tempi di produzione di 20%.
2.2.1 Tool Selection by Material & Compito
Materiale | Machining Task | Tipo di strumento | Specifiche |
Plastica (ABS/PC) | Ruvido | Carbide Flat-End Mill | Φ6–10mm, 2–3 teeth |
Plastica (ABS/PC) | Finitura | Carbide Ball-Nose Mill | Φ2–4mm, 4–6 teeth |
Lega di alluminio | Ruvido | Carbide End Mill | Φ4–6mm, 2 denti |
Lega di alluminio | Finitura | TiAlN-Coated Carbide Cutter | Φ3–5mm, 4 denti |
Acciaio inossidabile | Ruvido | High-Speed Steel End Mill | Φ4–8mm, 2 denti |
Acciaio inossidabile | Finitura | Diamond-Coated Cutter | Φ2–4mm, 4 denti |
2.2.2 Impostazione dei parametri di taglio
Optimized parameters prevent material deformation and ensure surface quality:
Materiale | Stadio di lavorazione | Velocità (RPM) | Velocità di alimentazione (mm/dente) | Profondità di taglio (mm) | Refrigerante |
Plastica addominali | Ruvido | 300–600 | 0.2–0,5 | 0.5–2 | Aria compressa |
Plastica addominali | Finitura | 800–1500 | 0.1–0,2 | 0.1–0,3 | Aria compressa |
Lega di alluminio (6061) | Ruvido | 1500–2500 | 0.1–0,3 | 1–3 | Emulsione |
Lega di alluminio (6061) | Finitura | 2500–4000 | 0.05–0,1 | 0.05–0,1 | Emulsione |
Acciaio inossidabile (304) | Ruvido | 800–1200 | 0.08–0,15 | 0.3–1 | Emulsione |
Acciaio inossidabile (304) | Finitura | 1500–2000 | 0.03–0.08 | 0.03–0.05 | Emulsione |
2.2.3 Machining Sequence
Follow this order to avoid component damage and ensure accuracy:
- Process large parts first (PER ESEMPIO., indoor/outdoor housings) to set the assembly reference.
- Machine complex curved surfaces (PER ESEMPIO., volutes, deflectors) in layers (0.5–1mm per layer) to ensure shape precision.
- Finish small precision parts (PER ESEMPIO., motor brackets, pulsanti del pannello di controllo) last to prevent collision.
3. Esecuzione di lavorazione a CNC: Turn Models into Physical Components
This phase is the core of prototype creation, following a “machine preparation → roughing → semi-finishing → finishing” workflow to ensure component precision (tolerance ±0.03mm for key parts).
3.1 Machine Preparation & Programmazione
- Machine Selection:
- Most parts (Alloggi, dissipatori di calore) Usa un 3-fresatrice CNC ad assi (precisione di posizionamento ±0,01 mm).
- Complex parts like volutes or central AC deflectors require a 5-macchina CNC ad assi for multi-angle machining.
- Programmazione & Calibrazione:
- Importa modelli 3D nel software CAM (PER ESEMPIO., Mastercam, E nx) per generare percorsi utensile; set safety planes (5–10 mm sopra il pezzo) per evitare la collisione dell'utensile.
- Materiali del morsetto (piatti di plastica, blocchi di alluminio) e calibrare il punto zero utilizzando un tastatore (precisione ±0,005 mm).
3.2 Ruvido & Semifinishing: Shape the Basic Form
- Ruvido: Remove 80–90% of excess material to approach the component’s basic shape. Per esempio:
- Housing: Mill the outer contour first, then dig the internal cavity (avoids plastic collapse).
- Heat Sinks: Rough-cut the base shape, leaving 0.5–1mm allowance for fin machining.
- Semifinishing: Correct roughing deviations and leave a 0.1–0.2mm allowance for finishing. I passaggi chiave includono:
- Smoothing air duct inner walls to reduce airflow resistance.
- Pre-drilling screw holes (90% of final diameter) for precise tapping later.
3.3 Finitura: Ottieni precisione & Qualità della superficie
Finishing determines the prototype’s appearance and functional performance. The table below outlines requirements for key components:
Componente | Rugosità superficiale | Metodo di elaborazione |
Indoor Unit Housing | RA ≤0,8μm | Polish with 800–1200 mesh sandpaper; remove tool marks |
Heat Sinks | Ra ≤0.4μm | High-speed finishing for fin spacing (0.5–1mm); deburr fin edges with a wire brush |
Volutes | Ra ≤0.6μm | 5-axis finishing for curved surfaces; ensure smooth airflow path |
Pannello di controllo | RA ≤1,6μm | Polish and clean; prepare for silk-screen or touch-sensitive film |
- Special Structure Machining:
- Heat sink fins: Use a specialized fin cutter to ensure uniform spacing (±0.05mm variation).
- AC outlet deflectors: Machine swing shafts with tolerance ±0.02mm to ensure smooth movement.
4. Post-elaborazione & Assemblaggio: Migliora le prestazioni & Estetica
Post-processing removes flaws and prepares components for assembly, while careful assembly ensures the prototype functions as intended.
4.1 Post-elaborazione: Improve Durability & Aspetto
- Sfacciato & Pulizia:
- Parti di plastica: Use a blade to remove burrs; clean with isopropyl alcohol to eliminate oil residue.
- Parti metalliche: Sand with 400–800 mesh sandpaper; per alluminio, use a wire brush to remove oxidation.
- Trattamento superficiale:
Componente | Metodo di trattamento | Scopo |
Indoor Unit Housing | Spray matte/glossy paint; hot-stamp brand logos | Migliora l'estetica; prevent scratches |
Outdoor Unit Housing | Anodize (alluminio) or electroplate (acciaio inossidabile); add anti-UV coating | Migliorare la resistenza alla corrosione; withstand outdoor weather |
Pannello di controllo | Silk-screen buttons/icons; spray insulating paint | Ensure visibility; prevent electrical leakage |
- Functional Enhancement:
- Attach rubber seals to filter mounting grooves (improves air tightness by 20%).
- Install waterproof membranes on control panels to prevent dust/water ingress.
4.2 Assemblaggio & Debug: Validate Functionality
Follow a sequential assembly order to avoid rework, then conduct comprehensive testing:
4.2.1 Assembly Sequence
- Assemble core components: Mount the evaporator/condenser to the housing → install the fan and motor → attach air duct components.
- Add secondary parts: Install the control panel → attach the filter → connect wires (use heat-shrinkable tubes for insulation).
- Secure structures: Use screws (coppia: 1.5–2.0 N·m for M3 screws), scatta, or epoxy glue (for air duct joints).
4.2.2 Functional Debugging
Test Item | Strumenti/Metodi | Passa criteri |
Airflow Uniformity | Anemometer (measured at 1m from the outlet) | Variation ≤5% across different points; meets design airflow rate (PER ESEMPIO., 300m³/h for wall-mounted AC) |
Noise Level | Sound level meter (indoor unit: 1m away; outdoor unit: 3m away) | Indoor unit ≤30dB; outdoor unit ≤55dB |
Heat Exchange Efficiency | Thermometer (measure inlet/outlet air temperature) | Raffreddamento: Temperature drop ≥8°C (interno); Riscaldamento: Temperature rise ≥5°C (interno) |
Water Leakage | Fill drainage port with water (1l); observe for 30 minuti | No leakage from housing or joints |
Swing Function | Protractor + stopwatch | Swing angle meets design specs (PER ESEMPIO., 0°–90° for wall-mounted AC); no jitter |
5. Casi di applicazione: Tailor Processes to AC Types
Different AC types require adjusted processes to meet their unique needs.
5.1 Wall-Mounted AC Prototype
- Messa a fuoco: Compact structure and silent operation.
- Process Adjustments:
- Use thin aluminum alloy (0.8mm) for the indoor unit housing to reduce thickness (≤180mm).
- Optimize air duct curvature to reduce turbulence (noise ≤30dB); test filter removal/installation ease.
5.2 Central AC Outlet Prototype
- Messa a fuoco: Multi-directional airflow and corrosion resistance.
- Process Adjustments:
- Usa l'acciaio inossidabile (304) for outdoor-facing parts (Resistenza alla corrosione); machine deflectors with 5-axis CNC for 0°–120° swing.
- Test compatibility with central AC main units (airflow matching, installation fit).
La prospettiva della tecnologia Yigu
Alla tecnologia Yigu, Vediamo il CNC machining air conditioning prototype process come a “performance validator”—it identifies design flaws early to save mass production costs. Il nostro team dà priorità a due pilastri: precision and functionality. For key parts like heat sinks, we use aluminum alloy with 5-axis finishing (fin spacing ±0.05mm) to ensure heat exchange efficiency. For air ducts, we optimize curvature via CFD simulation and CNC machining (Ra ≤0.6μm) to reduce noise. Integriamo anche la scansione 3D post-lavorazione per verificare l'accuratezza dimensionale (± 0,03 mm), riducendo i tassi di rilavorazione 25%. Concentrandosi su questi dettagli, aiutiamo i clienti a ridurre il time-to-market di 1–2 settimane. Whether you need a wall-mounted or central AC prototype, we tailor solutions to meet global energy efficiency and safety standards.
Domande frequenti
- Q: How long does the entire CNC machining air conditioning prototype process take?
UN: Typically 12–18 working days. This includes 2–3 days for preparation (requirements analysis, Modellazione), 4–6 giorni per la lavorazione del CNC, 2–3 giorni per post-elaborazione, 3–4 days for assembly, and 1–2 days for debugging/testing.