What Is the Professional CNC Machining Air Conditioning Prototype Process?

polyester pet injection molding

IL CNC machining air conditioning prototype process è un flusso di lavoro sistematico che trasforma i concetti di progettazione del condizionamento dell'aria in prototipi fisici, convalidare l'autenticità dell'aspetto, razionalità strutturale, efficienza dello scambio termico, e logica funzionale fondamentale (PER ESEMPIO., uniformità del flusso d'aria, controllo del rumore). Questo articolo analizza il processo passo dopo passo, dalla progettazione preliminare al debug finale, utilizzando tabelle basate sui dati, indicazioni pratiche, e suggerimenti per la risoluzione dei problemi per aiutarti ad affrontare le sfide principali e garantire il successo del prototipo.

1. Preparazione preliminare: Definire i requisiti & Lay the Design Foundation

Preliminary preparation sets the direction for the entire prototype development. Si concentra su due compiti fondamentali: requirements analysis & design concettuale E 3D Modellazione & structural detailing, both tailored to the unique needs of different air conditioning types (PER ESEMPIO., compact structure for wall-mounted AC, multi-directional airflow for central AC).

1.1 Requirements Analysis & Design concettuale

Before starting machining, clarify functional and appearance requirements to avoid misaligned development goals—this step reduces rework risk by 30% in media.

1.1.1 Chiarimento dei requisiti funzionali

Different AC types have distinct functional priorities. The table below outlines key specs for common models:

AC TypeFocus funzionale principaleEsempio di specifiche chiave
Wall-Mounted ACCompact indoor unit, efficient heat exchangeCooling capacity: 2–3.5kW; Rumore (indoor unit): ≤30dB; Indoor unit thickness ≤180mm
Vertical ACLarge airflow, stable baseCooling capacity: 3.5–5kW; Air supply range: 0°–90° (up/down swing); Base weight ≥30kg
Central AC OutletMulti-directional airflow, compatibilitàAirflow uniformity: ±5% variation; Swing angle (sinistra/destra): 0°–120°; Material corrosion resistance

1.1.2 Progettazione concettuale dell'aspetto

Crea schizzi preliminari o bozze 3D utilizzando strumenti come Sketchup O Rinoceronte, with three key considerations:

  • Coordinazione estetica: Wall-mounted ACs use slim, curved lines (radius 8–12mm) to fit home walls; vertical ACs adopt cylindrical or rectangular shapes for living room decor.
  • Human-Computer Interaction: Place displays and buttons at eye level (1.5–1.8m from the ground for wall-mounted ACs); use touch-sensitive or physical knobs with clear icons.
  • Environmental Adaptation: Add dust filters (removable design for easy cleaning) and drainage ports (positioned to avoid water leakage); use anti-mildew materials for high-humidity areas.

1.2 3D Modellazione & Structural Detailing

Use professional CAD software to translate concepts into precise models, ensuring processability for CNC machining.

1.2.1 Selezione del software & Core Structural Design

  • Scelta del software: Priorità Solidworks, E nx, O Per/e—they support parametric design, allowing easy adjustment of dimensions (PER ESEMPIO., evaporator size, air duct width) and compatibility with CAM software.
  • Ripartizione dei componenti: Split the AC into parts like indoor/outdoor unit housing, componenti del condotto dell'aria (deflectors, volutes), dissipatori di calore, motor brackets, E pannelli di controllo for separate machining.
  • Key Structure Optimization:
  1. Housing: Determine material thickness (1–3mm for plastic, 0.8–1.5mm for aluminum alloy) and assembly structures (scatta, M3–M4 screw holes with ±0.1mm tolerance).
  2. Air Ducts: For wall-mounted ACs, optimize airflow paths to reduce turbulence (PER ESEMPIO., curved volutes with 5°–10° expansion angle); for central AC outlets, design multi-layer deflectors for uniform air distribution.
  3. Heat Sinks: Design fin density (0.5–1mm spacing) e forma (wavy or louvered) based on heat exchange efficiency—wavy fins improve heat dissipation by 15% compared to flat fins.
  4. Detail Features: Add brand logos (embossed height 0.8–1mm), indicator light holes (diameter 3–5mm), and filter mounting grooves (depth 5–8mm, tolleranza ± 0,05 mm).

2. Selezione del materiale & Process Planning: Match Materials to Performance Needs

Choosing the right materials and defining machining strategies are critical for prototype performance. This phase follows amaterial selection → parameter setting → sequence planningworkflow to ensure efficiency and precision.

2.1 Selezione del materiale: Balance Performance, Costo, and Processability

Different AC components require materials with specific properties (PER ESEMPIO., thermal conductivity for heat sinks, corrosion resistance for outdoor units). The table below compares suitable options:

ComponenteMateriale consigliatoProprietà chiaveVantaggi di elaborazioneGamma di costi (al kg)
Indoor Unit HousingPlastica addominali / PC BlendLeggero, resistente all'impatto, low noise transmissionFacile da tagliare; smooth surface for painting\(3- )6
Outdoor Unit HousingLega di alluminio (6061) / Acciaio inossidabile (304)Resistente alla corrosione, durevole, resistente alle intemperieGood for anodization; high strength for outdoor use\(6- )10 (Alluminio); \(15- )22 (SS)
Air Duct ComponentsPlastica addominali / Lega di alluminioAlta rigidità, stabilità dimensionale buonaPlastica: No burrs; Metallo: Suitable for curved machining\(3- )6 (Plastica); \(6- )10 (Metallo)
Heat SinksLega di alluminio (1050) / RameEccellente conduttività termica (Al: 220 W/m · k; Cu: 401 W/m · k)Fast machining; easy to form fins\(5- )8 (Alluminio); \(18- )25 (Rame)
Control PanelsAddominali + PC BlendIsolamento, Resistenza all'ambiente, smooth surface for silk-screenCompatible with touch-sensitive film installation\(4- )7

Esempio: Wall-mounted AC heat sinks use aluminum alloy (economico, leggero), while high-end central AC heat sinks use copper (superior thermal conductivity) for large cooling capacity.

2.2 Process Planning: Define CNC Machining Strategies

Clear process planning ensures efficient and precise machining, Ridurre i tempi di produzione di 20%.

2.2.1 Tool Selection by Material & Compito

MaterialeMachining TaskTipo di strumentoSpecifiche
Plastica (ABS/PC)RuvidoCarbide Flat-End MillΦ6–10mm, 2–3 teeth
Plastica (ABS/PC)FinituraCarbide Ball-Nose MillΦ2–4mm, 4–6 teeth
Lega di alluminioRuvidoCarbide End MillΦ4–6mm, 2 denti
Lega di alluminioFinituraTiAlN-Coated Carbide CutterΦ3–5mm, 4 denti
Acciaio inossidabileRuvidoHigh-Speed Steel End MillΦ4–8mm, 2 denti
Acciaio inossidabileFinituraDiamond-Coated CutterΦ2–4mm, 4 denti

2.2.2 Impostazione dei parametri di taglio

Optimized parameters prevent material deformation and ensure surface quality:

MaterialeStadio di lavorazioneVelocità (RPM)Velocità di alimentazione (mm/dente)Profondità di taglio (mm)Refrigerante
Plastica addominaliRuvido300–6000.2–0,50.5–2Aria compressa
Plastica addominaliFinitura800–15000.1–0,20.1–0,3Aria compressa
Lega di alluminio (6061)Ruvido1500–25000.1–0,31–3Emulsione
Lega di alluminio (6061)Finitura2500–40000.05–0,10.05–0,1Emulsione
Acciaio inossidabile (304)Ruvido800–12000.08–0,150.3–1Emulsione
Acciaio inossidabile (304)Finitura1500–20000.03–0.080.03–0.05Emulsione

2.2.3 Machining Sequence

Follow this order to avoid component damage and ensure accuracy:

  1. Process large parts first (PER ESEMPIO., indoor/outdoor housings) to set the assembly reference.
  2. Machine complex curved surfaces (PER ESEMPIO., volutes, deflectors) in layers (0.5–1mm per layer) to ensure shape precision.
  3. Finish small precision parts (PER ESEMPIO., motor brackets, pulsanti del pannello di controllo) last to prevent collision.

3. Esecuzione di lavorazione a CNC: Turn Models into Physical Components

This phase is the core of prototype creation, following amachine preparation → roughing → semi-finishing → finishingworkflow to ensure component precision (tolerance ±0.03mm for key parts).

3.1 Machine Preparation & Programmazione

  • Machine Selection:
  • Most parts (Alloggi, dissipatori di calore) Usa un 3-fresatrice CNC ad assi (precisione di posizionamento ±0,01 mm).
  • Complex parts like volutes or central AC deflectors require a 5-macchina CNC ad assi for multi-angle machining.
  • Programmazione & Calibrazione:
  1. Importa modelli 3D nel software CAM (PER ESEMPIO., Mastercam, E nx) per generare percorsi utensile; set safety planes (5–10 mm sopra il pezzo) per evitare la collisione dell'utensile.
  2. Materiali del morsetto (piatti di plastica, blocchi di alluminio) e calibrare il punto zero utilizzando un tastatore (precisione ±0,005 mm).

3.2 Ruvido & Semifinishing: Shape the Basic Form

  • Ruvido: Remove 80–90% of excess material to approach the component’s basic shape. Per esempio:
  • Housing: Mill the outer contour first, then dig the internal cavity (avoids plastic collapse).
  • Heat Sinks: Rough-cut the base shape, leaving 0.5–1mm allowance for fin machining.
  • Semifinishing: Correct roughing deviations and leave a 0.1–0.2mm allowance for finishing. I passaggi chiave includono:
  • Smoothing air duct inner walls to reduce airflow resistance.
  • Pre-drilling screw holes (90% of final diameter) for precise tapping later.

3.3 Finitura: Ottieni precisione & Qualità della superficie

Finishing determines the prototype’s appearance and functional performance. The table below outlines requirements for key components:

ComponenteRugosità superficialeMetodo di elaborazione
Indoor Unit HousingRA ≤0,8μmPolish with 800–1200 mesh sandpaper; remove tool marks
Heat SinksRa ≤0.4μmHigh-speed finishing for fin spacing (0.5–1mm); deburr fin edges with a wire brush
VolutesRa ≤0.6μm5-axis finishing for curved surfaces; ensure smooth airflow path
Pannello di controlloRA ≤1,6μmPolish and clean; prepare for silk-screen or touch-sensitive film
  • Special Structure Machining:
  • Heat sink fins: Use a specialized fin cutter to ensure uniform spacing (±0.05mm variation).
  • AC outlet deflectors: Machine swing shafts with tolerance ±0.02mm to ensure smooth movement.

4. Post-elaborazione & Assemblaggio: Migliora le prestazioni & Estetica

Post-processing removes flaws and prepares components for assembly, while careful assembly ensures the prototype functions as intended.

4.1 Post-elaborazione: Improve Durability & Aspetto

  • Sfacciato & Pulizia:
  • Parti di plastica: Use a blade to remove burrs; clean with isopropyl alcohol to eliminate oil residue.
  • Parti metalliche: Sand with 400–800 mesh sandpaper; per alluminio, use a wire brush to remove oxidation.
  • Trattamento superficiale:
ComponenteMetodo di trattamentoScopo
Indoor Unit HousingSpray matte/glossy paint; hot-stamp brand logosMigliora l'estetica; prevent scratches
Outdoor Unit HousingAnodize (alluminio) or electroplate (acciaio inossidabile); add anti-UV coatingMigliorare la resistenza alla corrosione; withstand outdoor weather
Pannello di controlloSilk-screen buttons/icons; spray insulating paintEnsure visibility; prevent electrical leakage
  • Functional Enhancement:
  • Attach rubber seals to filter mounting grooves (improves air tightness by 20%).
  • Install waterproof membranes on control panels to prevent dust/water ingress.

4.2 Assemblaggio & Debug: Validate Functionality

Follow a sequential assembly order to avoid rework, then conduct comprehensive testing:

4.2.1 Assembly Sequence

  1. Assemble core components: Mount the evaporator/condenser to the housing → install the fan and motor → attach air duct components.
  2. Add secondary parts: Install the control panel → attach the filter → connect wires (use heat-shrinkable tubes for insulation).
  3. Secure structures: Use screws (coppia: 1.5–2.0 N·m for M3 screws), scatta, or epoxy glue (for air duct joints).

4.2.2 Functional Debugging

Test ItemStrumenti/MetodiPassa criteri
Airflow UniformityAnemometer (measured at 1m from the outlet)Variation ≤5% across different points; meets design airflow rate (PER ESEMPIO., 300m³/h for wall-mounted AC)
Noise LevelSound level meter (indoor unit: 1m away; outdoor unit: 3m away)Indoor unit ≤30dB; outdoor unit ≤55dB
Heat Exchange EfficiencyThermometer (measure inlet/outlet air temperature)Raffreddamento: Temperature drop ≥8°C (interno); Riscaldamento: Temperature rise ≥5°C (interno)
Water LeakageFill drainage port with water (1l); observe for 30 minutiNo leakage from housing or joints
Swing FunctionProtractor + stopwatchSwing angle meets design specs (PER ESEMPIO., 0°–90° for wall-mounted AC); no jitter

5. Casi di applicazione: Tailor Processes to AC Types

Different AC types require adjusted processes to meet their unique needs.

5.1 Wall-Mounted AC Prototype

  • Messa a fuoco: Compact structure and silent operation.
  • Process Adjustments:
  • Use thin aluminum alloy (0.8mm) for the indoor unit housing to reduce thickness (≤180mm).
  • Optimize air duct curvature to reduce turbulence (noise ≤30dB); test filter removal/installation ease.

5.2 Central AC Outlet Prototype

  • Messa a fuoco: Multi-directional airflow and corrosion resistance.
  • Process Adjustments:
  • Usa l'acciaio inossidabile (304) for outdoor-facing parts (Resistenza alla corrosione); machine deflectors with 5-axis CNC for 0°–120° swing.
  • Test compatibility with central AC main units (airflow matching, installation fit).

La prospettiva della tecnologia Yigu

Alla tecnologia Yigu, Vediamo il CNC machining air conditioning prototype process come a “performance validator—it identifies design flaws early to save mass production costs. Il nostro team dà priorità a due pilastri: precision and functionality. For key parts like heat sinks, we use aluminum alloy with 5-axis finishing (fin spacing ±0.05mm) to ensure heat exchange efficiency. For air ducts, we optimize curvature via CFD simulation and CNC machining (Ra ≤0.6μm) to reduce noise. Integriamo anche la scansione 3D post-lavorazione per verificare l'accuratezza dimensionale (± 0,03 mm), riducendo i tassi di rilavorazione 25%. Concentrandosi su questi dettagli, aiutiamo i clienti a ridurre il time-to-market di 1–2 settimane. Whether you need a wall-mounted or central AC prototype, we tailor solutions to meet global energy efficiency and safety standards.

Domande frequenti

  1. Q: How long does the entire CNC machining air conditioning prototype process take?

UN: Typically 12–18 working days. This includes 2–3 days for preparation (requirements analysis, Modellazione), 4–6 giorni per la lavorazione del CNC, 2–3 giorni per post-elaborazione, 3–4 days for assembly, and 1–2 days for debugging/testing.

Indice
Scorri fino all'alto