Step-by-Step Process for Plastic Injection Molding Prototype Models

thermoplatic injection molding plastic parts

Creazione di a plastic injection molding prototype is a critical step in product development—it lets you test design feasibility, Convalida le prestazioni, and avoid costly mistakes in mass production. A differenza delle parti prodotte in serie, prototypes prioritize speed, cost-efficiency, e adattabilità, while still following core injection molding principles. Below is a complete, actionable breakdown of the prototype development process, from material pick to final application.

1. Material Selection for Prototypes

Scegliere il materiale giusto è il primo (and often make-or-break) step for prototypes. The goal is to balance Proprietà materiali with prototype goals—whether you’re testing durability, aspetto, o costo. Here’s how to navigate key choices:

Categoria materialeEsempi chiaveKey Considerations for Prototypes
TermoplasticiPp, Addominali, PC, Nylon, ANIMALE DOMESTICOMost common for prototypes—melt and re-solidify, facile da regolare. Ideal for testing form, adatto, and basic function.
ThermossetsEpossidico, Resine fenolicheHarden permanently after molding—good for high-heat or chemical-resistance tests. Less common for prototypes (hard to modify).
AdditiviRiempitivi (fibra di vetro), Stabilizzatori UV, ritardanti di fiammaAdd only if the prototype needs to mimic final part performance (PER ESEMPIO., glass fiber for stiffness). Skip non-essential additives to cut costs.
ColorantsLiquid dyes, masterbatchesUse only if appearance testing is critical. Clear or natural resins save time and money for functional prototypes.

Per la punta: Priorità costo-efficacia for early-stage prototypes—opt for common resins like PP or ABS instead of high-end materials like PEEK. For supplier selection, choose vendors who offer small batch sizes (1-5 kg) to avoid waste. Anche, check densità (affects part weight) E portata (ensures the resin fills small prototype mold cavities easily).

2. Design Considerations for Prototype Success

Prototype design should be “mold-friendly” to speed up production and reduce defects. Even small design tweaks can save days of rework. Here’s a checklist of critical factors:

Core Design Elements & Suggerimenti

  • Design in parte: Keep it simple—avoid overcomplicating with unnecessary features (PER ESEMPIO., intricate logos) in early prototypes. Focus on testing the part’s core function.
  • Spessore del muro: Punta per 1-3 mm (uniform across the part). Pareti più sottili (<1 mm) cause short shots; thicker walls (>3 mm) lead to sink marks. Use gradual transitions if thickness must change.
  • Angoli di tiraggio: Aggiungere 1-3 degrees to all vertical surfaces. This lets the prototype eject smoothly from the mold—no more stuck parts or scratches.
  • Costolette & Boss: Costolette (for stiffness) should be 0.5x the wall thickness; capi (per viti) should have a diameter 2x the screw size. Aggiungi filetti (radius = 0.5 mm) to avoid stress cracks.
  • Sottosquadri: Minimize them! Sottosquadri (PER ESEMPIO., side grooves) require complex mold slides, which increase prototype cost and lead time. Se necessario, use temporary solutions like post-machining.
  • Tolleranze: Loosen tolerances for early prototypes (±0.1 mm is enough for fit tests). Tolleranze strette (<± 0,05 mm) add cost and slow production.

Design Validation Tools

Before finalizing the design:

  1. Utilizzo CAD Modelling (PER ESEMPIO., Solidworks, Fusione 360) to create 3D models—share these with your mold maker to avoid miscommunication.
  2. Run Mold Flow Simulation (PER ESEMPIO., Autodesk Moldflow) to test resin flow. This catches issues like air traps or uneven filling early.
  3. Per parti ad alto stress (PER ESEMPIO., staffe automobilistiche), utilizzo Analisi degli elementi finiti (Fea) to test strength—this avoids building prototypes that fail under load.

3. Mold Preparation for Prototypes

Stampi prototipo (called “soft tools”) are simpler and cheaper than mass-production molds. They’re often made from aluminum (invece dell'acciaio) to speed up machining. Ecco il processo chiave:

Mold Components & Passaggi di preparazione

ComponenteScopoPrototype-Specific Tips
Mold BaseProvides structure for the moldUse standard-sized aluminum bases (PER ESEMPIO., 150×150 mm) to cut costs.
Cavità & CoresShape the prototype (cavity = outer surface; core = inner surface)For single-cavity molds (most prototypes), machine cavities directly into the aluminum—faster than multi-cavity molds.
Ejector PinsPush the prototype out of the moldUtilizzo 2-4 piccoli spille (3-5 diametro mm) — place them near thick areas to avoid warping.
Canali di raffreddamentoCool the mold to set the resinDrill simple straight channels (instead of complex curved ones) — aluminum cools quickly, so basic channels work.
Heating ElementsWarm the mold (for resins with high melting points)Skip unless using resins like PC (punto di fusione >220° C.). Aluminum retains heat well, so extra heating is rarely needed.

Mold Making Process

  1. Mold Machining: Use CNC milling for simple shapes; utilizzo Elettroerosione (Lavorazione a scarica elettrica) only for fine details (PER ESEMPIO., piccoli buchi). Aluminum machines 5x faster than steel—perfect for quick prototypes.
  2. Mold Polishing: Polish cavities to a #4 fine (opaco) per prototipi funzionali. High-gloss finishes (#8) are only needed for appearance tests.
  3. Mold Assembly: Assemble components loosely first—test fit with a dummy resin (PER ESEMPIO., cera) to ensure alignment. Tighten screws only after test fitting.
  4. Mold Testing: Run 5-10 test shots with scrap resin. Check for leaks, disallineamento, or stuck parts—fix issues before running the actual prototype batch.

4. The Injection Molding Process for Prototypes

Prototype injection molding focuses on speed and flexibility—you’ll often run small batches (10-50 parti) and adjust parameters on the fly. Here’s how to execute it smoothly:

Key Machine Settings (for ABS Prototype Example)

ParametroGamma ottimalePerché è importante per i prototipi
Clamping Force50-100 tonnellateLower force works for small prototypes—avoids damaging the aluminum mold.
Pressione di iniezione60-90 MPAToo high = flash (excess resin); too low = short shots. Start low and increase if needed.
Temperatura di scioglimento210-240° C.Keep 10-15°C lower than mass production—prevents resin degradation in small batches.
Tempo del ciclo30-60 SecondiLonger than mass production (gives aluminum molds time to cool). Rushing leads to warped parts.
Velocità a vite60-100 RPMSlow speed mixes resin evenly without generating excess heat.
Drying Process80° C per 2-3 ore (per addominali)Critical for resins like nylon or PC—moisture causes bubbles. Skip only for dry resins like PP.

Step-by-Step Molding Workflow

  1. Alimentazione del materiale: Carico 1-2 kg of resin into the hopper (small batches reduce waste). Add a few pellets of colorant if needed.
  2. Design degli ugelli: Use a small-diameter nozzle (3-5 mm) to fill narrow prototype cavities. Keep the nozzle 1-2 mm from the mold to avoid leaks.
  3. Velocità di iniezione: Start at 40-60 mm/s. If the part has thin walls, increase to 70-80 mm/s to avoid short shots.
  4. Packing Pressure: Fare domanda a 80-90% of injection pressure for 2-3 Secondi. This fills any small gaps in the prototype.
  5. Tempo di raffreddamento: Let the mold cool for 15-25 Secondi (aluminum cools fast!). Eject the part only when it’s cool to the touch.

Common Issue Fix: If the prototype has flash (excess resin), reduce injection pressure by 5-10 MPA. If it has short shots, increase melt temperature by 5-10°C.

5. Post-Processing and Finishing for Prototypes

Post-processing turns raw molded parts into usable prototypes. Focus on tasks that support your test goals—skip unnecessary steps to save time.

Essential vs. Post-elaborazione opzionale

CompitoScopoWhen to Use
Deburring/DeflashingRemove excess resin from edges/parting linesAlways do this—sharp burrs ruin fit tests. Use a hand file (per piccoli lotti) or rotary brush.
TaglioCut off runner systems (the plastic channels that feed resin)Always do this—runners make prototypes hard to test. Use scissors (for soft resins) o una sega a banda.
Lavorazione (Drilling/Tapping)Add holes or threads for assemblyOnly if testing assembly (PER ESEMPIO., attaching the prototype to another part). Use a handheld drill for small holes.
Painting/PlatingImprove appearanceOnly for appearance tests (PER ESEMPIO., showing the prototype to stakeholders). Usa la vernice spray (dries in 30 minuti) for quick results.
AssemblaggioJoin multiple prototype partsUtilizzo Saldatura ad ultrasuoni (veloce, no adhesives) O legame adesivo (basso costo) per piccoli lotti. Avoid rivets (permanent, hard to modify).

Per la punta: Per prototipi funzionali, skip painting/plating—focus on deburring and trimming. For appearance prototypes, utilizzo stampa (PER ESEMPIO., pad printing) for logos instead of expensive plating.

6. Applications and Uses of Injection Molding Prototypes

Prototypes are used across industries to de-risk product development. Here’s how different sectors leverage them:

Industry-Specific Uses

  • Parti automobilistiche: Test fit of interior components (PER ESEMPIO., Clip dashboard) or durability of small parts (PER ESEMPIO., maniglie delle porte).
  • Elettronica di consumo: Validate the size of phone cases or the fit of charging port covers.
  • Dispositivi medici: Test the ergonomics of syringes or the compatibility of plastic parts with liquids.
  • Confezione: Check if a bottle prototype holds liquid without leaking or if a lid seals properly.
  • Giocattoli: Test safety (PER ESEMPIO., no small parts that break off) e durata (PER ESEMPIO., withstands dropping).
  • Componenti aerospaziali: Test lightweight parts (PER ESEMPIO., parentesi di plastica) for strength under low pressure.

Prototype Stages in Product Development

  1. Concept Prototype: Early-stage, basso costo (PER ESEMPIO., Parti addominali) to test basic form.
  2. Prototipo funzionale: Mid-stage, uses final material (PER ESEMPIO., PC) to test performance.
  3. Pre-Production Prototype: Late-stage, identical to mass-produced parts—used for final validation.

Yigu Technology’s View

Alla tecnologia Yigu, we know prototype success hinges on balancing speed, costo, and clarity of goals. For plastic injection molding prototypes, we prioritize aluminum molds (veloce, economico) and common thermoplastics for early stages, then shift to final materials for functional tests. We integrate CAD, Mold Flow, and FEA to catch issues before molding, tagliare il tempo di rilavorazione 30%. Our focus is on delivering prototypes that solve real problems—whether it’s testing a fit, validating a design, or impressing stakeholders.

FAQs

  1. Q: How long does it take to make a plastic injection molding prototype?

UN: 1-2 weeks for simple prototypes (aluminum mold + Parti addominali). Prototipi complessi (with undercuts or FEA testing) Prendere 3-4 settimane.

  1. Q: Can I use the same mold for prototype and mass production?

UN: Rarely—prototype molds are aluminum (morbido, wears out after 1,000+ colpi), while mass-production molds are steel (difficile, dura 100,000+ colpi). Use the prototype mold to refine the design, then make a steel mold for production.

  1. Q: How much does a plastic injection molding prototype cost?

UN: \(500-\)2,000 for a simple prototype (aluminum mold + 10-50 parti). Costs rise to \(3,000-\)5,000 for complex designs (EDM machining, FEA testing, or final materials like PC).

Indice
Scorri fino all'alto