How to Execute CNC Machining for Electric Toy Prototypes?

4 axis cnc machining

Electric toys, with functions like movement, sound, e luce, rely heavily on high-precision prototypes to validate design and functionality. MACCHING CNC stands out as a key method for creating these prototypes, ensuring complex structures and electronic integration work seamlessly. This article breaks down the full CNC machining process for electric toy prototypes, addressing common pain points for engineers and manufacturers.

1. Pre-machining: Progetto & Selezione del materiale

A well-planned design and suitable materials are the foundation of a successful electric toy prototype. This stage focuses on aligning functionality with machining feasibility.

1.1 Analisi della domanda & 3D Modellazione

Before 3D modeling, clarify core requirements to avoid rework. Then use professional software to create detailed models.

Demand Analysis Breakdown

Requirement TypeDettagli chiaveImpatto sulla lavorazione del CNC
Function DefinitionConfirm functions (PER ESEMPIO., gear-driven movement, LED lights, sound modules); select core components (motori, batterie, controllers)Determines space reserved for components (PER ESEMPIO., motor slots, battery compartments) in machining
Design strutturaleDesign appearance, parti meccaniche (gear sets, joint moving parts), and electronic layoutInfluences tool path planning (PER ESEMPIO., avoiding undercuts in joint structures)
Standard di sicurezzaEnsure no sharp edges; design anti-reverse battery structuresRequires precise chamfering (≤0.5mm) and accurate slot dimensions during machining

3D Modellazione & Engineering Drawing Tips

  • Scelta del software: Utilizzo Solidworks O E nx for 3D modeling—they support modular design, allowing decomposition of the toy into parts (conchiglia, transmission structure, electronic bracket) for step-by-step machining.
  • Detail Optimization:
  • Reserve 2-3mm extra space for electronic components (PER ESEMPIO., battery compartments) to accommodate assembly gaps.
  • Add anti-slip textures (profondità: 0.2-0.3mm) on handles and snap structures (tolleranza: ± 0,05 mm) for secure assembly.

1.2 Material Comparison for Core Components

Selecting the right material balances performance, costo, and machining ease.

Tipo di componenteOptional MaterialsVantaggiSvantaggiNote di lavorazione
Toy ShellPlastica addominaliBasso costo, Facile da macchina, Buona resistenza all'impattoLow heat resistance (≤80°C)Use high rotational speed (10,000-15,000 giri al minuto) per evitare di sciogliersi
Plastica per PCResistente al calore (fino a 120 ° C.), durevoleCosto più elevato, prone to crackingSlow feed speed (150-200 mm/min) raccomandato
Parti di trasmissione (Marcia, Alberi)Lega di alluminio (6061)Alta resistenza, leggeroNeeds anodization post-processingUse coolant to prevent burrs
Pom (Plastica ingegneristica)Self-lubricating, basso attritoLow impact resistanceNo coolant needed; finish with 800# carta vetrata
Transparent Parts (Windows, Lights)AcrilicoHigh light transmittance (≥92%), facile da lucidareFragile, prone to scratchingUse ball head cutter for smooth surfaces (Ra ≤ 0,8μm)

2. CNC Machining Stage: Impostare & Execution

This stage transforms raw materials into components, requiring careful machine selection, programmazione, and precision control.

2.1 Machine Tool & Selezione degli strumenti

Choosing the right machine and tools ensures efficiency and accuracy.

Machining NeedTipo di macchina consigliatoSuitable ToolsTool Size (mm)Scopo
Small Precision Parts (Shells, Marcia)Small CNC Engraving Machine (PER ESEMPIO., 3018 Pro)Flat Bottom Cutter (Ruvido), Ball Head Cutter (Finitura)Φ4-8 (Ruvido), Φ2-4 (Finitura)Remove excess material; achieve smooth surfaces
Complex Metal Parts (Drive Shafts)Machining CenterTwist Drill, Taper CutterΦ3-6 (Drill), Φ5-8 (Taper)Drill holes; create tapered joints

2.2 Programmazione & Toolpath Optimization

  • G-Code Programming: Utilizzo Mastercam O PowerMill per generare percorsi utensile. Follow a two-step strategy:
  1. Macchinatura ruvida: Rimuovere 80-90% of excess material with a flat bottom cutter—set depth of cut to 1-2mm per pass to save time.
  2. Finitura: Use a ball head cutter for surfaces (PER ESEMPIO., toy shells) to ensure no knife marks—set depth of cut to 0.1-0.2mm.
  • Parameter Setting for Common Materials:
MaterialeRotational Speed (giri al minuto)Velocità di alimentazione (mm/min)Profondità di taglio (mm)
Plastica addominali12,000 – 16,000200 – 3001.5 – 2.0
Lega di alluminio (6061)8,000 – 12,000100 – 1501.0 – 1.5
Acrilico15,000 – 20,000250 – 3500.8 – 1.2

2.3 Machining Precautions

  • Fissaggio & Posizionamento:
  • Use double-sided adhesive for plastic sheets (prevents surface damage) or clamps for metal blocks.
  • For symmetrical parts (PER ESEMPIO., toy arms), usare il “one side and two pins” method—position pins 5-10mm from edges to ensure ±0.05mm accuracy.
  • Controllo di precisione:
  • Maintain tolerance of ±0.1mm for plastic parts (PER ESEMPIO., conchiglie) E ±0.05mm for metal transmission parts (PER ESEMPIO., marcia).
  • Per strutture a pareti sottili (thickness ≤1mm), add temporary supports during machining and remove them post-processing.

3. Post-elaborazione & Assemblaggio

Post-processing improves appearance and durability, while assembly verifies functionality.

3.1 Trattamento superficiale

Proper treatment enhances aesthetics and safety.

ComponenteSurface Treatment ProcessScopoParametri
Toy Shell (ABS/PC)Levigatura (80#→2000#) + Spraying Matte PaintRimuovere i segni di lavorazione; prevent scratchesSabbia nei movimenti circolari; paint thickness: 0.1-0.2mm
Parti in lega di alluminioPulizia ad ultrasuoni + Anodizzazione (Black/Silver)Remove oil/chips; Prevenire la ruggineAnodization layer thickness: 5-10µm
Transparent Acrylic PartsLucidare (1000#→3000# Sandpaper + Pasta di lucidatura)Improve light transmittance; remove scratchesPolish until surface is mirror-like (Ra ≤ 0.2μm)
Logos/PatternsScreening della setaAdd brand logos or decorative patternsInk thickness: ≤0.05mm; dry at 60°C for 30 minuti

3.2 Electronic Integration & Assemblaggio

Follow a logical sequence to ensure components work together.

Assemblaggio passo dopo passo (Linear Narrative)

  1. Mechanical Assembly: First install gear sets and joint moving parts—test movement smoothness (no jamming when rotated 360°).
  2. Electronic Installation: Solder motors, batterie, and controllers to the PCB board; fix the PCB to the CNC-machined bracket (use M2 screws, coppia: 0.3 N · m).
  3. Shell Encapsulation: Attach the top and bottom shells with snaps or screws—check for gaps (≤0,1 mm) to prevent dust entry.

Functional Testing Checklist

  • Mechanical Function: Test motor speed (PER ESEMPIO., 500-1000 RPM for toy cars) and torque—adjust gear ratios if movement is too slow/fast.
  • Electronic Function: Verify LED lights (no flickering) and sound modules (clear audio)—check circuit stability by running the toy continuously for 1 ora (no overheating >45°C).
  • Safety Test: Inspect for sharp edges (use a feeler gauge: no protrusions >0.1mm) and test the anti-reverse battery structure (battery cannot be inserted backwards).

4. Post-elaborazione & Ottimizzazione

Refine the prototype based on test results to prepare for small-batch production.

4.1 Aspetto & Ottimizzazione strutturale

  • Appearance Repair: Fill small scratches (depth ≤0.1mm) with putty; use 3D printing to patch missing parts (PER ESEMPIO., broken snap structures).
  • Structural Improvement:
  • Lightweight Design: Add hollowed-out areas (diametro: 3-5mm) in non-load-bearing parts (PER ESEMPIO., toy body) to reduce weight by 10-15%.
  • Strength Enhancement: Add stiffeners (larghezza: 1-2mm) to stressed parts (PER ESEMPIO., connecting shafts) or switch from plastic to aluminum alloy if cracks appear.

4.2 Small-Batch Validation

  • Replica Production: If the prototype passes tests, utilizzo silicone replica molds (vacuum pouring) fare 10-20 small-batch prototypes—this reduces CNC machining costs for repeated tests.
  • Iterative Improvement: Adjust the design based on user feedback (PER ESEMPIO., modify gear tooth count if the toy is too noisy; increase battery compartment size for longer runtime).

Yigu Technology’s Viewpoint

For CNC machining of electric toy prototypes, precisione e sicurezza non sono negoziabili. Yigu Technology suggests prioritizing modular design in the early stage—breaking the toy into small parts simplifies machining and reduces rework. Material selection should align with use cases: ABS is ideal for low-cost, non-heat-exposed shells, while aluminum alloy works best for high-stress transmission parts. Post-elaborazione, like acrylic polishing and aluminum anodization, not only improves aesthetics but also extends the prototype’s lifespan. Guardando avanti, as electric toys become more intelligent (PER ESEMPIO., adding sensors), CNC machining will need to handle smaller, more complex components—requiring tighter tolerances (± 0,03 mm) and advanced tooling like micro-mills.

Domande frequenti

  1. What CNC machine is best for small electric toy prototypes (PER ESEMPIO., 5-10cm size)?

Small CNC engraving machines (PER ESEMPIO., 3018 Pro) sono ideali. They offer high precision (± 0,01 mm), are cost-effective, and can handle small parts like toy shells and gears without occupying much space.

  1. How to prevent plastic parts from melting during CNC machining?

Use high rotational speeds (12,000-16,000 RPM per ABS) and moderate feed speeds (200-300 mm/min). Inoltre, use compressed air to blow away chips and cool the material—avoiding heat buildup that causes melting.

  1. Why is “one side and two pins” positioning used for symmetrical toy parts?

This method ensures consistent accuracy across multiple prototypes. The fixed “one side” acts as a reference, while the two pins prevent lateral movement during machining—critical for symmetrical parts like toy arms, where even a 0.1mm misalignment can cause assembly issues (PER ESEMPIO., uneven joint movement).

Indice
Scorri fino all'alto