IN 1.2379 Acciaio per utensili: Proprietà, Applicazioni & Guida alla produzione

Produzione su misura di parti metalliche

Se lavori in settori come la produzione di utensili, automobilistico, o aerospaziale, probabilmente hai sentito parlare di EN 1.2379 acciaio per utensili. Questa lega ad alte prestazioni è la scelta migliore per applicazioni esigenti in cui la durezza, resistenza all'usura, e la durabilità contano di più. Ma cosa lo distingue esattamente? In questa guida, analizzeremo le sue proprietà chiave, usi nel mondo reale, produzione […]

Se lavori in settori come la produzione di utensili, automobilistico, o aerospaziale, you’ve probably heard ofIN 1.2379 acciaio per utensili. Questa lega ad alte prestazioni è la scelta migliore per applicazioni esigenti in cui la durezza, resistenza all'usura, e la durabilità contano di più. Ma cosa lo distingue esattamente? In questa guida, analizzeremo le sue proprietà chiave, usi nel mondo reale, metodi di produzione, and how it compares to other materials—so you can decide if it’s the right fit for your project.

1. Material Properties of EN 1.2379 Acciaio per utensili

EN 1.2379’s performance starts with its carefully balanced composition and unique properties. Let’s break this down into three key categories:

1.1 Composizione chimica

The chemical makeup of EN 1.2379 is what gives it its strength and resistance. Below is a table of its typical elemental range (per EN standards):

ElementoGamma di contenuti (%)Role in the Alloy
Carbonio (C)1.40 – 1.60Aumenta la durezza e la resistenza all'usura; essential for tool performance.
Manganese (Mn)0.30 – 0.60Improves hardenability and reduces brittleness during heat treatment.
Silicio (E)0.15 – 0.35Enhances strength and oxidation resistance at high temperatures.
Cromo (Cr)11.50 – 13.00Provides corrosion resistance and helps form hard carbides for wear protection.
Molibdeno (Mo)0.40 – 0.60Increases toughness and high-temperature strength; prevents grain growth.
Vanadium (V)0.10 – 0.30Forms hard vanadium carbides, improving wear resistance and edge retention.
Zolfo (S)≤ 0.030Kept low to avoid reducing toughness and ductility.
Fosforo (P)≤ 0.030Minimized to prevent brittleness, especially in cold conditions.

1.2 Proprietà fisiche

These properties affect how EN 1.2379 behaves in different environments (per esempio., Calore, pressione). All values are measured at room temperature unless noted:

  • Densità: 7.75 g/cm³ (similar to most tool steels, making it easy to machine to standard weights).
  • Punto di fusione: 1450 – 1510 °C (high enough to withstand hot working processes like forging).
  • Conducibilità termica: 25 Con/(m·K) (lower than carbon steel, so it heats up slowly—important for controlled heat treatment).
  • Coefficiente di dilatazione termica: 11.5 × 10⁻⁶/°C (da 20 A 500 °C; low expansion means less warping during cooling).
  • Specific Heat Capacity: 460 J/(kg·K) (efficient at storing and releasing heat, useful for tools that handle repeated heating cycles).

1.3 Proprietà meccaniche

Mechanical properties determine how EN 1.2379 performs under stress. These values are typical after standard heat treatment (tempra + tempering at 180 °C):

ProprietàValore tipicoTest StandardWhy It Matters
Durezza (HRC)58 – 62EN ISO 6508High hardness means the tool retains its edge and resists wear (critical for cutting tools).
Resistenza alla trazione≥ 2000 MPaEN ISO 6892Can handle high pulling forces without breaking—ideal for machine parts under load.
Forza di snervamento≥ 1800 MPaEN ISO 6892Resists permanent deformation, so tools keep their shape during use.
Allungamento≤ 3%EN ISO 6892Low ductility (expected for hard tool steels; trade-off for high hardness).
Resistenza all'impatto (Charpy V-notch)≥ 15 J (A 20 °C)EN ISO 148-1Moderate toughness—avoids brittle fracture in cold or shock-loaded applications.
Fatigue Strength~800 MPa (10⁷ cycles)EN ISO 13003Resists failure from repeated stress (key for tools used in high-cycle manufacturing).

1.4 Altre proprietà

  • Resistenza alla corrosione: Bene (thanks to high chromium content). It resists rust in mild environments (per esempio., workshop air) but is not fully stainless—avoid prolonged exposure to strong chemicals.
  • Resistenza all'usura: Eccellente. The combination of carbon and chromium forms hard carbides that protect against abrasive wear (perfect for dies and cutting tools).
  • Lavorabilità: Giusto. Its high hardness makes it harder to machine than low-carbon steels, but pre-heat treatment (annealing to HRC 22–28) improves machinability.
  • Temprabilità: Very good. It can be hardened evenly across thick sections (fino a 50 mm), so large tools maintain consistent performance.

2. Applications of EN 1.2379 Acciaio per utensili

EN 1.2379’s mix of hardness, resistenza all'usura, and toughness makes it versatile. Ecco i suoi usi più comuni, con esempi del mondo reale:

2.1 Utensili da taglio

  • Esempi: Frese, trapani, rubinetti, and broaches for machining metals (per esempio., alluminio, acciaio).
  • Why it works: High HRC hardness (58–62) keeps edges sharp, even after hundreds of cuts. A case study from a German tool manufacturer found that EN 1.2379 end mills lasted 30% longer than those made from standard high-speed steel (HSS) when cutting stainless steel.

2.2 Dies and Molds

  • Esempi: Cold stamping dies (for making metal parts like automotive brackets), extrusion dies (for aluminum profiles), e stampi per iniezione plastica (per parti ad alto volume).
  • Why it works: Wear resistance prevents die degradation, while good hardenability ensures even performance across large die sizes. A Turkish automotive supplier reported that EN 1.2379 stamping dies reduced maintenance costs by 25% compared to carbon steel dies.

2.3 Machine Parts

  • Esempi: Denti dell'ingranaggio, alberi a camme, and valve components for industrial machinery.
  • Why it works: High tensile strength and fatigue resistance handle constant load and stress. A Dutch machinery maker used EN 1.2379 for gear teeth in a conveyor system, and the parts lasted 2x longer than alloy steel alternatives.

2.4 Automotive and Aerospace Components

  • Esempi: Valvole del motore (automobilistico) and turbine blades (small aerospace applications).
  • Why it works: Tolerates high temperatures (fino a 300 °C) senza perdere le forze. An Italian auto parts maker tested EN 1.2379 valves in diesel engines and found they withstood 50,000+ operating hours without failure.

3. Manufacturing Techniques for EN 1.2379 Acciaio per utensili

Turning EN 1.2379 into usable parts requires careful processing. Below is a step-by-step breakdown of key techniques:

  1. Fusione: Materie prime (iron, carbonio, cromo, ecc.) are melted in an electric arc furnace (EAF) at 1500–1600 °C. This ensures uniform mixing of elements.
  2. Colata: Molten steel is poured into molds to form ingots (large blocks) or near-net-shape parts. Slow cooling prevents internal cracks.
  3. Forgiatura: Ingots are heated to 1100–1200 °C and pressed/hammered into shapes (per esempio., die blanks). Forging improves grain structure, making the steel stronger.
  4. Trattamento termico: The most critical step—standard cycle:
    • Ricottura: Heat to 800–850 °C, hold for 2–4 hours, cool slowly. Softens the steel (HRC 22–28) per la lavorazione.
    • Tempra: Heat to 950–1050 °C, hold for 1–2 hours, dissetare nell'olio. Hardens the steel to HRC 60–63.
    • Temperamento: Reheat to 180–250 °C, hold for 1–3 hours, cool. Reduces brittleness and sets final hardness (HRC 58–62).
  5. Rettifica: Dopo il trattamento termico, parts are ground to precise dimensions (per esempio., 0.001 mm tolerance for cutting tools). This removes surface defects and improves finish.
  6. Lavorazione: Perforazione, fresatura, o girando (done before quenching, when the steel is soft). Carbide tools are recommended for best results.
  7. Trattamento superficiale: Optional steps like nitriding (adds a hard surface layer) o rivestimento (per esempio., Stagno) to boost wear resistance further.

4. Caso di studio: IN 1.2379 in Cold Stamping Dies

A European automotive supplier faced a problem: their carbon steel stamping dies for making door hinges were wearing out every 100,000 parti, leading to frequent downtime. They switched to EN 1.2379, and here’s what happened:

  • Processo: The dies were forged, ricotto (HRC 25), machined to shape, quenched (1000 °C), tempered (200 °C), and ground to tolerance.
  • Risultati:
    • Die life increased to 350,000 parti (250% miglioramento).
    • I costi di manutenzione sono diminuiti 40% (fewer die changes).
    • Part quality improved: fewer burrs (thanks to EN 1.2379’s uniform hardness).
  • Why it worked: The alloy’s high chromium content formed hard carbides that resisted abrasive wear from the steel hinges, while its toughness prevented chipping during stamping.

5. IN 1.2379 contro. Other Materials

How does EN 1.2379 stack up against common alternatives? Let’s compare key properties:

MaterialeDurezza (HRC)Resistenza all'usuraResistenza alla corrosioneCosto (contro. IN 1.2379)Ideale per
IN 1.2379 Acciaio per utensili58 – 62EccellenteBene100%Utensili da taglio, cold dies
High-Speed Steel (HSS)60 – 65Very GoodPovero80%High-speed cutting (per esempio., fresatura)
Acciaio inossidabile (304)20 – 25PoveroEccellente120%Corrosion-prone parts (not tools)
Acciaio al carbonio (1095)55 – 60BenePovero50%Low-cost tools (low wear apps)
Acciaio legato (4140)30 – 40GiustoGiusto70%Parti strutturali (not tools)

Key takeaway: IN 1.2379 offers a better balance of hardness, resistenza all'usura, and corrosion resistance than carbon or alloy steel—without the high cost of some specialty HSS grades.

Yigu Technology’s View on EN 1.2379 Acciaio per utensili

Alla tecnologia Yigu, we’ve seen firsthand how EN 1.2379 solves our clients’ most pressing tooling challenges. Its ability to combine high hardness with toughness makes it a reliable choice for industries like automotive and aerospace, where downtime and part quality are critical. We often recommend it for cold stamping dies and precision cutting tools, as it delivers long service life and consistent performance—helping clients reduce costs and improve efficiency. For projects needing extra corrosion resistance, we pair it with our proprietary nitriding process to further enhance its durability.

FAQ About EN 1.2379 Acciaio per utensili

1. Can EN 1.2379 be used for hot working applications (per esempio., hot forging dies)?

NO, IN 1.2379 is designed for cold or moderate-temperature use (fino a 300 °C). For hot working (temperature > 500 °C), choose a hot-work tool steel like EN 1.2344, which has better high-temperature strength.

2. How do I machine EN 1.2379 effectively?

Machine EN 1.2379before quenching (when it’s annealed to HRC 22–28). Use carbide cutting tools with high cutting speeds (100–150 m/min for milling) and low feed rates (0.1–0.2 mm/rev) to avoid tool wear. After quenching, only grind or EDM (lavorazione tramite elettroerosione) is recommended.

3. Is EN 1.2379 magnetic?

SÌ, like most tool steels, IN 1.2379 is ferromagnetic (attracted to magnets). This is because it contains iron and does not have enough nickel (a non-magnetic element) to be austenitic (non magnetico).

Indice
Scorri fino all'inizio