Lavorazione CNC: La guida completa al processo di fresatura per ingegneri

stampo in composto siliconico

Se sei uno specialista degli acquisti o un ingegnere di prodotto, sai che la scelta del giusto metodo di lavorazione può creare o distruggere il costo del tuo progetto, velocità, e qualità. La fresatura CNC, una parte fondamentale della moderna lavorazione CNC, è uno dei processi di produzione sottrattiva più versatili, utilizzato per creare qualsiasi cosa, dalle semplici staffe alle complesse parti aerospaziali. Questa guida […]

Se sei uno specialista degli acquisti o un ingegnere di prodotto, sai che la scelta del giusto metodo di lavorazione può creare o distruggere il costo del tuo progetto, velocità, e qualità. Fresatura CNC—a core part of modern Lavorazione CNC—is one of the most versatile subtractive manufacturing processes, utilizzato per creare qualsiasi cosa, dalle semplici staffe alle complesse parti aerospaziali. This guide breaks down the entire CNC milling process, from machine parts to real-world applications, so you can make informed decisions and avoid common pitfalls.

1. Cos'è la fresatura CNC, and How Did It Evolve?

Fresatura CNC is a subtractive manufacturing process where a computer-controlled cutting tool removes material from a workpiece to shape it into a desired design. A differenza della fresatura manuale (which relied on machinists’ skill and was prone to errors), CNC (Controllo numerico computerizzato) fresatura uses preprogrammed code to ensure precision down to 0.025 mm—critical for industries like aerospace and automotive.

A Quick History Lesson

Before the 18th-century Industrial Revolution, manufacturing relied on manual casting—slow, tedious, and error-prone. By the 20th century, manual milling machines emerged, but they still depended on human control. The rise of digital technology changed everything: today’s CNC milling machines turn 3D designs into precise parts at high speeds, con un intervento umano minimo.

Esempio del mondo reale: Automotive Part Production

A leading car manufacturer once used manual milling to make engine brackets. Il processo ha richiesto 2 hours per bracket and had a 10% error rate (wasting $150 per failed part). After switching to Fresatura CNC, they cut production time to 30 minutes per bracket and reduced errors to 0.5%—saving over $50,000 annually on material waste.

2. Key Parts of a CNC Milling Machine

To understand how CNC milling works, you need to know its core components. While machine parts vary by manufacturer and type, these six parts are found in every CNC mill:

  • Mandrino: Holds the cutting tool in place and spins it at high speeds (up to thousands of RPM).
  • Control Panel: The computer interface where operators input programs and monitor the process.
  • Colonne: The main frame that supports other components, ensuring stability during machining.
  • Saddle Pieces: Attached to the columns, they hold and move the workbench.
  • Workbench: The surface where the workpiece is secured with clamps or vices.
  • Foundation: The base that keeps the entire machine stable on the floor, preventing vibration.

3. The Step-by-Step CNC Milling Workflow

CNC milling isn’t just “pressing a button”—it follows a structured 4-step process to ensure accuracy. Ecco come funziona, with a real example from a medical device manufacturer:

Fare un passo 1: Design a 3D CAD Model

Primo, engineers create a 3D model of the part using CAD (Progettazione assistita da computer) software (per esempio., SolidWorks, AutoCAD). Every feature—from holes to slots—must be included. Per esempio, a medical device company designed a titanium surgical screw in SolidWorks, adding details like thread depth and a rounded tip.

Fare un passo 2: Convert CAD to G-Code with CAM

CNC mills can’t read CAD files directly—they need G-Code (digital instructions for tool movement). CAMMA (Produzione assistita da computer) software (per esempio., Fusione 360 CAMMA) converts the CAD model into G-Code. For the surgical screw, Fusione 360 CAM generated code that told the mill how fast to spin the tool and where to cut.

Fare un passo 3: Set Up the Milling Machine

Operators prepare the machine by:

  1. Securing the workpiece (titanio, in the medical example) to the workbench.
  2. Attaching the right cutting tool (a multi-flute end mill) to the spindle.
  3. Adding cutting fluid to cool the tool and workpiece.

Fare un passo 4: Perform the Milling

The machine runs the G-Code, and the cutting tool removes material. Depending on the mill type, either the tool moves, the workpiece moves, o entrambi. For the surgical screw, the 5-axis CNC mill rotated the workpiece while the tool cut the threads—resulting in a precise part that met medical standards.

4. Critical CNC Milling Terminology You Need to Know

Understanding these terms will help you communicate with machinists and avoid misunderstandings:

  • Cutting Tool: The detachable part that cuts material (per esempio., end mills for flat surfaces). Choose tools based on the workpiece material—aluminum needs a different tool than steel.
  • Velocità (giri al minuto): How fast the tool spins (measured in revolutions per minute). Aluminum can be milled at 3,000 giri al minuto, while steel needs slower speeds (1,500 giri al minuto) to prevent tool wear.
  • Foraggio: The distance the tool or workpiece moves per revolution. A higher feed (per esempio., 100 mm/min for aluminum) accelera la produzione, but a lower feed (50 mm/min for steel) garantisce precisione.
  • Depth of Cut: How far the tool penetrates the workpiece. A deeper cut (per esempio., 5 mm) removes more material but may require more power.
  • Cutting Fluid: A liquid that cools the tool and workpiece, reducing friction and extending tool life.

5. Types of CNC Milling Machines: 3-Axis vs. 5-Asse

The number of axes a mill has determines its capabilities. Below is a comparison of the two most popular types:

Feature3-Fresa CNC ad asse5-Fresa CNC ad asse
Axes MovementX (sinistra/destra), Y (front/back), Z (su/giù)X, Y, Z + 2 assi di rotazione (UN, B, o C)
Workpiece RepositioningRequires manual repositioningNo manual repositioning needed
Ideale perParti semplici (per esempio., parentesi, rondelle)Parti complesse (per esempio., componenti aerospaziali, strumenti chirurgici)
Cost Per Part$5–$50$30–$200 (60–100% higher than 3-axis)
PrecisioneAlto (tolleranza: 0.05 mm)Very high (tolleranza: 0.025 mm)
Finitura superficialeBene (some tool marks)Eccellente (no tool marks)

Esempio: Aerospace Part Production

An aerospace company needed to make a complex turbine blade. A 3-axis mill would have required 3 manual repositionings (increasing error risk), but a 5-axis mill produced the blade in one run—saving 4 hours per part and improving accuracy by 50%.

6. Materials Suitable for CNC Milling

CNC milling works with over 50 engineering materials. The table below highlights common options and their uses:

Tipo materialeEsempiProprietà chiaveIdeale per
MetalliAlluminio, acciaio, titanioForte, resistente al caloreParti automobilistiche, componenti aerospaziali
PlasticaABS, SBIRCIARE, policarbonatoLeggero, basso costoBeni di consumo, dispositivi medici
AltroLegna, bicchiere, elastomersVersatile, facile da lavorarePrototipi, parti decorative

Pro Tip for Procurement Specialists

Choose aluminum for low-cost, parti leggere (per esempio., elettronica di consumo). For high-stress parts (per esempio., componenti del motore), use steel or titanium—even though they cost more, they last longer and reduce maintenance costs.

7. Advantages and Limitations of CNC Milling

Vantaggi

  • Scalabilità: Works for 1-off prototypes or mass production (10,000+ parti). Costs decrease as production volume increases—producing 1,000 brackets costs 30% less per unit than producing 100.
  • Tempi di consegna rapidi: CAD/CAM integration cuts lead times. A prototype that took 1 week with manual milling can be done in 1 day with CNC.
  • Precisione: Tolerances as tight as 0.025 mm meet strict industry standards (per esempio., aerospaziale, medico).
  • Versatilità: Can create holes, slot, discussioni, e superfici curve.

Limitazioni

  • Complex Geometry Costs: More material removal means higher costs. A part with deep cavities may cost 50% more than a simple flat part.
  • Tool Access Restrictions: The workpiece holder can block the tool—requiring manual repositioning (increasing time and error risk).
  • Unmillable Features: Curved holes, straight inner edges, and walls thinner than 0.5 mm can’t be milled (use laser cutting or EDM instead).
  • Rifiuti materiali: Subtractive manufacturing produces scrap—up to 30% of the workpiece for complex parts.

8. Yigu Technology’s Perspective on CNC Milling

Alla tecnologia Yigu, we help manufacturers optimize their CNC milling processes. We recommend 3-axis mills for simple, parti ad alto volume (per esempio., staffe automobilistiche) per mantenere bassi i costi. Per parti complesse (per esempio., strumenti medici), 5-axis mills are worth the investment—they reduce rework and improve quality. We also advise clients to use cutting fluids tailored to their material (per esempio., oil-based fluids for steel) to extend tool life by 25%. For procurement teams, partnering with suppliers who offer both 3-axis and 5-axis milling ensures flexibility for all project needs.

Domande frequenti

1. Can CNC milling produce parts with curved holes?

NO, CNC milling can’t create curved holes—this is a key limitation. For curved holes, use alternative methods like laser drilling or electrical discharge machining (Elettroerosione), which can handle complex geometries that mills can’t.

2. How do I choose between a 3-axis and 5-axis mill for my project?

Choose a 3-axis mill if your part is simple (no curved surfaces needing multi-angle cuts) and you need high volume at low cost. Choose a 5-axis mill if your part is complex (per esempio., componenti aerospaziali) and requires tight tolerances—even though it’s more expensive, it saves time on repositioning and reduces errors.

3. What’s the most cost-effective material for CNC milling?

Aluminum is the most cost-effective option for most projects. It’s cheap (Di $2 al kg), easy to mill (fast speeds and feeds), and produces less tool wear (lower tool replacement costs). For parts needing strength, steel is a good alternative—though it costs more ($5 al kg), it’s more durable than aluminum.

Indice
Scorri fino all'inizio