Classifications of CNC Machining: A Complete Guide for Industrial Selection

cnc broaching

Nella produzione moderna, why do aerospace engineers choose 5-Macchine CNC assi while a small workshop uses 3-axis models? The answer lies in understanding the classifications of CNC machining—a framework that groups CNC systems by their capabilities, processi, e casi d'uso. Choosing the wrong category leads to wasted costs, Produzione lenta, or failed parts. Questo articolo analizza il 6 core classifications of CNC machining, le loro caratteristiche chiave, Applicazioni del mondo reale, e suggerimenti per la selezione, helping you match the right CNC solution to your project needs.

What Are the Core Classifications of CNC Machining?

MACCHING CNC (Computer Numerical Control machining) uses automated systems to shape materials, but not all CNC setups are the same. The industry classifies CNC machining based on 6 fattori critici: processing technology, machine tool movement, automation degree, number of axes (degrees of freedom), application field, and special functional designs. Each classification solves unique manufacturing challenges—for example, metal cutting CNC machines handle shafts and gears, while laser cutting systems process non-metallic materials like glass.

1. Classification by Processing Technology

This category groups CNC machining by the type of material and the method used to shape it. It’s the most fundamental classification, as it directly ties to the material you’re working with. The table below details the two main subcategories and their key methods:

Processing CategoryKey MethodsCompatibilità materialeApplicazioni ideali
Metal Cutting ProcessingRotazione: Shapes rotating workpieces (PER ESEMPIO., alberi) to create outer circles, end faces. – Fresatura: Taglia forme complesse (slot, buchi) with rotating tools. – Noioso: Expands existing holes for higher accuracy. – Perforazione: Creates through/blind holes with drill bits. – Alesatura: Finishes drilled holes to improve surface smoothness. – Toccando: Adds internal threads to holes.Ferrous metals (acciaio, ferro), metalli non ferrosi (alluminio, rame, titanio).– Rotazione: Automotive engine shafts, pedali per bici. – Fresatura: Cavità di muffa, laptop chassis. – Perforazione: Electronic enclosure mounting holes.
Non-Metallic Material ProcessingTaglio laser: Uses high-energy lasers to melt/vaporize materials. – Taglio del getto d'acqua: Cuts with high-velocity water (plus abrasives for hard materials). – Lavorazione a scarica elettrica (Elettroerosione): Removes material via electrode-workpiece discharge (for conductive materials). – Ultrasonic Machining: Uses high-frequency vibrations + abrasives to shape brittle materials.Plastica (Addominali, SBIRCIARE), bicchiere, ceramica, compositi (fibra di carbonio).– Taglio laser: Acrylic signage, plastic packaging. – Taglio del getto d'acqua: Stone countertops, glass panels. – Elettroerosione: Carbide tooling, Inserti di muffa. – Ultrasonic Machining: Ceramic medical implants, glass lenses.

2. Classification by Machine Tool Movement Mode

This classification focuses on how the CNC machine’s tool and workpiece move relative to each other. It determines the complexity of shapes you can produce—from simple holes to curved aerospace parts.

Movement ModeKey CapabilitiesLivello di precisioneApplicazioni ideali
Point Control MachinesOnly controls tool position (no continuous path); moves directly from one point to another.± 0,01 mm (position accuracy); no path control.Drilling machines (hole positioning), boring machines (single-hole expansion).
Linear Control MachinesMoves tool along straight paths (X, Y, Z assi) while cutting; supports constant feed rates.± 0,005 mm (linear accuracy); uniform surface finish.Simple milling machines (flat surface cutting), tornio (straight shaft turning).
Contour Control MachinesMoves tool along complex curved trajectories (PER ESEMPIO., circles, parabolas); supports multi-axis linkage.± 0,003 mm (contour accuracy); handles 3D shapes.Multi-axis machining centers (aerospace wing parts), mold-making machines (curved cavities).

3. Classification by Degree of Automation

Automation level dictates how much human intervention is needed—critical for production volume and labor costs.

Automation LevelCaratteristiche chiaveLabor RequirementIdeal Production Scale
Semi-Automatic CNC MachinesAutomates cutting/machining but needs manual steps (PER ESEMPIO., workpiece clamping, Cambiamenti dello strumento).1 operator per machine; constant supervision for manual tasks.Piccoli lotti (10–50 parti), custom prototypes (PER ESEMPIO., one-off mold inserts).
Fully Automatic CNC MachinesHandles the entire process automatically: auto loading/unloading, auto tool change, auto quality checks.1 operator manages 2–3 machines; minimal supervision.Produzione ad alto volume (1,000+ parti), mass manufacturing (PER ESEMPIO., componenti automobilistici).

4. Classification by Degrees of Freedom (Numero di assi)

The number of axes (lineare + rotary) determines the machine’s ability to access complex part geometries. This is the most widely used classification for industrial CNC selection.

Numero di assiKey Axes ConfigurationCapabilitiesIdeal Industries/Parts
3-Macchine CNC assi3 linear axes (X, Y, Z); tool moves along these axes to cut fixed workpieces.Handles 2D/3D parts with simple geometries; no undercutting or complex curves.Produzione generale (parentesi, simple gears), beni di consumo (recinti di plastica).
4-Macchine CNC assi3 linear axes + 1 rotary axis (PER ESEMPIO., A-ASIS: rotates around X-axis).Accesses side/angled features; reduces workpiece repositioning by 50%.Aerospaziale (simple engine parts), medico (bone screws with angled holes).
5-Macchine CNC assi3 linear axes + 2 rotary axes (PER ESEMPIO., UN + B axes); tool can tilt/rotate freely.Machines complex 3D surfaces (PER ESEMPIO., lame di turbina) in one setup.Aerospaziale (Componenti del motore a reazione), muffa & morire (deep cavities with undercuts), luxury automotive (curved body panels).

5. Classification by Application Field

CNC machines are often tailored to specific industries—optimized for their unique materials and part requirements.

Campo dell'applicazioneMachine FeaturesMaterial FocusParti di esempio
General-Purpose CNC MachinesVersatile; works with multiple materials and part types; easy to reconfigure.Metalli, plastica, compositi.Macchinari generali (cambi), hardware di mobili (cerniere), electronic brackets.
Specialized CNC MachinesCustomized for industry-specific needs (PER ESEMPIO., Resistenza ad alta temperatura, Precisione di una parte piccola).Industry-specific materials (PER ESEMPIO., titanium for aerospace, food-grade stainless steel for medical).– Automobile: Engine block machining lines. – Medico: Dental implant mills. – Aerospaziale: Titanium component lathes.

6. Other Special Classifications

These include machines with unique, combined functions—designed to solve niche manufacturing challenges.

Special TypeKey FunctionsVantaggio chiaveCasi d'uso ideali
Multi-Processing MachinesCombines 2+ machining types (PER ESEMPIO., rotazione + fresatura, perforazione + taglio laser) in one machine.Eliminates workpiece transfer between machines; taglia il tempo di produzione da 40%.Complex parts needing multiple processes (PER ESEMPIO., automotive shafts with milled slots, medical tools with drilled holes + threaded ends).
Micromachining MachinesFocuses on ultra-small parts/features; achieves nanometer-level resolution.Processes parts as small as 0.1mm (PER ESEMPIO., microelectronic components); alta precisione (±0.0001mm).Microelectronics (semiconductor chips), dispositivi medici (micro-needles), aerospaziale (Micro-sensori).

How to Choose the Right CNC Machining Classification?

Follow this 4-step process to avoid mismatched selections:

  1. Define Material & Geometria:
  • If working with metal shafts → Metal cutting (rotazione) + 3-Asse CNC.
  • If making complex aerospace turbine blades → Contour control + 5-Asse CNC.
  1. Match Automation to Volume:
  • Piccoli lotti (10 parti) → Semi-automatic CNC.
  • Produzione di massa (10,000 parti) → Fully automatic CNC.
  1. Consider Budget & ROI:
  • 5-axis machines cost 2–3x more than 3-axis models—only invest if complex parts justify the expense.
  1. Test con prototipi:
  • For high-stakes projects (PER ESEMPIO., Impianti medici), run a prototype on the chosen CNC type to validate accuracy and efficiency.

La prospettiva della tecnologia Yigu

Alla tecnologia Yigu, we believe understanding classifications of CNC machining is the first step to smart manufacturing. Our product line covers all key classifications: 3/4/5-axis CNC machines for metal cutting, fully automatic lines for high-volume production, and specialized micromachining systems for microelectronics. We help clients select the right category by analyzing their material, volume, and geometry needs—for example, a automotive supplier switched from 3-axis to 5-axis machines, cutting part rework by 60%. As Industry 4.0 advances, we’re integrating AI into all classifications to auto-optimize tool paths, making CNC selection and operation even more accessible.

Domande frequenti

  1. Q: Can a 5-axis CNC machine replace a 3-axis machine for simple parts?

UN: Tecnicamente sì, Ma non è conveniente. 5-axis machines have higher upfront costs (2–3x more) and longer setup times for simple parts. Stick to 3-axis machines for brackets, marcia, or enclosures to save money.

  1. Q: Which CNC classification is best for non-metallic materials like glass?

UN: Non-metallic material processing—specifically ultrasonic machining (for brittle glass) or laser cutting (for precise glass panels). Avoid metal cutting CNC machines, as they’ll crack or shatter glass.

  1. Q: How much more productive is a fully automatic CNC machine vs. a semi-automatic one?

UN: Fully automatic machines are 2–3x more productive. Per esempio, a semi-automatic CNC makes 50 parts/day (with operator breaks), while a fully automatic one makes 120–150 parts/day (24/7 operation with minimal labor).

Indice
Scorri fino all'alto