Classificazioni della lavorazione CNC: Una guida completa per la selezione industriale

brocciatura cnc

Nella produzione moderna, perché gli ingegneri aerospaziali scelgono macchine CNC a 5 assi mentre una piccola officina utilizza modelli a 3 assi? La risposta sta nella comprensione delle classificazioni della lavorazione CNC, un quadro che raggruppa i sistemi CNC in base alle loro capacità, processi, e casi d'uso. Scegliere la categoria sbagliata porta a costi inutili, produzione lenta, o parti guaste. Questo articolo […]

Nella produzione moderna, why do aerospace engineers choose 5-macchine CNC ad assi while a small workshop uses 3-axis models? The answer lies in understanding the classifications of CNC machining—a framework that groups CNC systems by their capabilities, processi, e casi d'uso. Scegliere la categoria sbagliata porta a costi inutili, produzione lenta, o parti guaste. Questo articolo analizza il 6 core classifications of CNC machining, their key features, applicazioni del mondo reale, and selection tips, helping you match the right CNC solution to your project needs.

What Are the Core Classifications of CNC Machining?

Lavorazione CNC (Computer Numerical Control machining) uses automated systems to shape materials, but not all CNC setups are the same. The industry classifies CNC machining based on 6 critical factors: processing technology, machine tool movement, automation degree, number of axes (degrees of freedom), application field, and special functional designs. Each classification solves unique manufacturing challenges—for example, metal cutting CNC machines handle shafts and gears, while laser cutting systems process non-metallic materials like glass.

1. Classification by Processing Technology

This category groups CNC machining by the type of material and the method used to shape it. It’s the most fundamental classification, as it directly ties to the material you’re working with. The table below details the two main subcategories and their key methods:

Processing CategoryMetodi chiaveCompatibilità dei materialiApplicazioni ideali
Metal Cutting ProcessingGirando: Shapes rotating workpieces (per esempio., alberi) to create outer circles, end faces. – Fresatura: Cuts complex shapes (slot, buchi) with rotating tools. – Noioso: Expands existing holes for higher accuracy. – Perforazione: Creates through/blind holes with drill bits. – Reaming: Finishes drilled holes to improve surface smoothness. – Toccando: Adds internal threads to holes.Ferrous metals (acciaio, iron), non-ferrous metals (alluminio, rame, titanio).– Girando: Automotive engine shafts, pedali della bicicletta. – Fresatura: Cavità dello stampo, laptop chassis. – Perforazione: Electronic enclosure mounting holes.
Non-Metallic Material ProcessingTaglio laser: Uses high-energy lasers to melt/vaporize materials. – Taglio a getto d'acqua: Cuts with high-velocity water (plus abrasives for hard materials). – Lavorazione ad elettroerosione (Elettroerosione): Removes material via electrode-workpiece discharge (for conductive materials). – Ultrasonic Machining: Uses high-frequency vibrations + abrasives to shape brittle materials.Plastica (ABS, SBIRCIARE), bicchiere, ceramica, compositi (fibra di carbonio).– Taglio laser: Acrylic signage, plastic packaging. – Taglio a getto d'acqua: Stone countertops, pannelli di vetro. – Elettroerosione: Carbide tooling, mold inserts. – Ultrasonic Machining: Ceramic medical implants, glass lenses.

2. Classification by Machine Tool Movement Mode

This classification focuses on how the CNC machine’s tool and workpiece move relative to each other. It determines the complexity of shapes you can produce—from simple holes to curved aerospace parts.

Movement ModeCapacità chiaveAccuracy LevelApplicazioni ideali
Point Control MachinesOnly controls tool position (no continuous path); moves directly from one point to another.±0,01 mm (position accuracy); no path control.Drilling machines (hole positioning), boring machines (single-hole expansion).
Linear Control MachinesMoves tool along straight paths (X, Y, Assi Z) while cutting; supports constant feed rates.±0,005 mm (linear accuracy); uniform surface finish.Simple milling machines (flat surface cutting), torni (straight shaft turning).
Contour Control MachinesMoves tool along complex curved trajectories (per esempio., circles, parabolas); supports multi-axis linkage.±0,003 mm (contour accuracy); handles 3D shapes.Multi-axis machining centers (aerospace wing parts), mold-making machines (curved cavities).

3. Classification by Degree of Automation

Automation level dictates how much human intervention is needed—critical for production volume and labor costs.

Automation LevelCaratteristiche principaliLabor RequirementIdeal Production Scale
Semi-Automatic CNC MachinesAutomates cutting/machining but needs manual steps (per esempio., workpiece clamping, tool changes).1 operator per machine; constant supervision for manual tasks.Piccoli lotti (10–50 parti), custom prototypes (per esempio., one-off mold inserts).
Fully Automatic CNC MachinesHandles the entire process automatically: auto loading/unloading, auto tool change, auto quality checks.1 operator manages 2–3 machines; minimal supervision.Produzione in grandi volumi (1,000+ parti), mass manufacturing (per esempio., componenti automobilistici).

4. Classification by Degrees of Freedom (Number of Axes)

The number of axes (lineare + rotary) determines the machine’s ability to access complex part geometries. This is the most widely used classification for industrial CNC selection.

Number of AxesKey Axes ConfigurationCapacitàIdeal Industries/Parts
3-Macchine CNC ad assi3 assi lineari (X, Y, Z); tool moves along these axes to cut fixed workpieces.Handles 2D/3D parts with simple geometries; no undercutting or complex curves.Produzione generale (parentesi, simple gears), beni di consumo (custodie in plastica).
4-Macchine CNC ad assi3 assi lineari + 1 asse rotante (per esempio., A-axis: rotates around X-axis).Accesses side/angled features; reduces workpiece repositioning by 50%.Aerospaziale (simple engine parts), medico (bone screws with angled holes).
5-Macchine CNC ad assi3 assi lineari + 2 assi rotanti (per esempio., UN + B axes); tool can tilt/rotate freely.Machines complex 3D surfaces (per esempio., pale della turbina) in una configurazione.Aerospaziale (jet engine components), muffa & morire (deep cavities with undercuts), luxury automotive (curved body panels).

5. Classification by Application Field

CNC machines are often tailored to specific industries—optimized for their unique materials and part requirements.

Application FieldMachine FeaturesMaterial FocusExample Parts
General-Purpose CNC MachinesVersatile; works with multiple materials and part types; easy to reconfigure.Metalli, plastica, compositi.General machinery (riduttori), ferramenta per mobili (cerniere), electronic brackets.
Specialized CNC MachinesCustomized for industry-specific needs (per esempio., resistenza alle alte temperature, precisione delle piccole parti).Industry-specific materials (per esempio., titanium for aerospace, food-grade stainless steel for medical).– Automobilistico: Engine block machining lines. – Medico: Dental implant mills. – Aerospaziale: Titanium component lathes.

6. Other Special Classifications

These include machines with unique, combined functions—designed to solve niche manufacturing challenges.

Special TypeKey FunctionsVantaggio chiaveIdeal Use Cases
Multi-Processing MachinesCombines 2+ machining types (per esempio., girando + fresatura, perforazione + taglio laser) in one machine.Eliminates workpiece transfer between machines; cuts production time by 40%.Complex parts needing multiple processes (per esempio., automotive shafts with milled slots, medical tools with drilled holes + threaded ends).
Micromachining MachinesFocuses on ultra-small parts/features; achieves nanometer-level resolution.Processes parts as small as 0.1mm (per esempio., microelectronic components); alta precisione (±0.0001mm).Microelectronics (semiconductor chips), dispositivi medici (micro-aghi), aerospaziale (microsensori).

How to Choose the Right CNC Machining Classification?

Follow this 4-step process to avoid mismatched selections:

  1. Define Material & Geometria:
  • If working with metal shafts → Metal cutting (girando) + 3-asse CNC.
  • If making complex aerospace turbine blades → Contour control + 5-asse CNC.
  1. Match Automation to Volume:
  • Piccoli lotti (10 parti) → Semi-automatic CNC.
  • Produzione di massa (10,000 parti) → Fully automatic CNC.
  1. Consider Budget & ROI:
  • 5-axis machines cost 2–3x more than 3-axis models—only invest if complex parts justify the expense.
  1. Test with Prototypes:
  • For high-stakes projects (per esempio., impianti medici), run a prototype on the chosen CNC type to validate accuracy and efficiency.

La prospettiva della tecnologia Yigu

Alla tecnologia Yigu, we believe understanding classifications of CNC machining is the first step to smart manufacturing. Our product line covers all key classifications: 3/4/5-axis CNC machines for metal cutting, fully automatic lines for high-volume production, and specialized micromachining systems for microelectronics. We help clients select the right category by analyzing their material, volume, and geometry needs—for example, a automotive supplier switched from 3-axis to 5-axis machines, cutting part rework by 60%. As Industry 4.0 advances, we’re integrating AI into all classifications to auto-optimize tool paths, making CNC selection and operation even more accessible.

Domande frequenti

  1. Q: Can a 5-axis CNC machine replace a 3-axis machine for simple parts?

UN: Technically yes, but it’s not cost-effective. 5-axis machines have higher upfront costs (2–3x more) and longer setup times for simple parts. Stick to 3-axis machines for brackets, ingranaggi, or enclosures to save money.

  1. Q: Which CNC classification is best for non-metallic materials like glass?

UN: Non-metallic material processing—specifically ultrasonic machining (for brittle glass) o taglio laser (for precise glass panels). Avoid metal cutting CNC machines, as they’ll crack or shatter glass.

  1. Q: How much more productive is a fully automatic CNC machine vs. a semi-automatic one?

UN: Fully automatic machines are 2–3x more productive. Per esempio, a semi-automatic CNC makes 50 parti/giorno (with operator breaks), while a fully automatic one makes 120–150 parts/day (24/7 operation with minimal labor).

Indice
Scorri fino all'inizio