Rubber prototypes—crafted from materials like silicone, TPE, TPU, and natural rubber—are critical for validating product functions like elasticity, sealing, and slip resistance. Unlike plastic or metal prototypes, their production requires specialized mold-making and molding processes to leverage rubber’s unique flexible properties. This article breaks down the full process from demand analysis to final testing, with comparisons, technical tips, and real-world examples to help you avoid common pitfalls and create high-quality rubber prototypes.
1. Pré-production: Définir les exigences & Plan Design
Before starting fabrication, clarify testing goals and design parameters to ensure the prototype aligns with your needs. This stage lays the foundation for material selection and process choice.
1.1 Clarify Core Requirements
Rubber prototypes serve three key validation purposes—focus on these to guide your design:
Catégorie d'exigence | Key Test Goals | Exemple du monde réel |
Validation fonctionnelle | Test elasticity (Par exemple, “Can the waterproof ring bounce back after compression?»), sealing (Par exemple, “Does it prevent water leakage?»), and slip resistance (Par exemple, “Does the grip stay secure when wet?»). | A phone manufacturer tests a silicone waterproof ring prototype to ensure it seals the charging port during 30-minute water submersion. |
Material Property Testing | Verify temperature resistance (Par exemple, “Will it withstand -30°C to 150°C for automotive use?»), se résistance à l'usure (Par exemple, “Does the tire tread avoid tearing?»), et la dureté (30°–70° Shore). | An outdoor gear brand tests a TPE grip prototype to confirm it retains flexibility after 1,000 hours of UV exposure. |
Structural Compatibility | Ensure rubber parts assemble with metal/plastic components (Par exemple, “Does the rubber slot fit the plastic housing?») and optimize thickness/chamfers to prevent deformation. | A medical device team adjusts the thickness of a silicone tube prototype from 1mm to 1.5mm to avoid kinking when connected to a plastic connector. |
1.2 Design 3D Models with Rubber-Specific Rules
Utiliser le logiciel CAO (Solide, Goût, et) Pour créer un modèle numérique, focusing on parameters unique to rubber:
Design Parameter | Exigences & Conseils | Raison |
Taux de retrait | Account for rubber’s natural shrinkage (1.02–1,05%: silicone = 1.03%, polyurethane = 1.02%). | Prevents dimensional errors—e.g., a 100mm waterproof ring will shrink to 97mm if using silicone; model it as 103mm initially. |
Épaisseur & Chamfrones | Keep thickness 0.5–5mm (too thin = easy tearing; too thick = slow curing). Add 0.5–1mm chamfers to edges. | A silicone shock pad prototype with 0.8mm chamfers avoids cracking when compressed, unlike a sharp-edged version that breaks after 50 presses. |
Anti-Slip Patterns & Trous | Mark anti-slip textures (Par exemple, grid patterns for grips) and assembly holes (Par exemple, 2mm diameter for screws) with clear coordinates. | A power tool handle prototype with 0.5mm-deep grid patterns passes slip tests—users report 40% less hand fatigue than a smooth-surface version. |
1.3 Split Complex Parts (Si nécessaire)
For curved or thin-walled rubber parts (Par exemple, a U-shaped sealing strip), split the 3D model into sections. This simplifies mold machining and prevents deformation during demolding. Par exemple:
- A curved silicone earbud prototype is split into “ear tip” and “body” sections—each fits into a smaller mold, reducing the risk of air bubbles compared to a single large mold.
2. Fabrication de moisissures: Choose the Right Method for Your Batch & Précision
Rubber prototypes require custom molds—select between CNC-machined and 3D-printed molds based on precision needs and production volume.
Type de moisissure | Détails du processus | Avantages | Désavantage | Idéal pour |
CNC Machined Mold | Use CNC to engrave steel or aluminum blocks; polish the surface to Ra0.8–Ra1.6 to reduce demolding friction. | Haute précision (± 0,05 mm), réutilisable (500+ cycles), suitable for hard rubbers like EPDM. | Coût élevé (\(500- )2,000 par moisissure), slow lead time (3–5 jours). | Petits lots (10–100 unités) of high-precision parts (Par exemple, medical device seals). |
3Moule imprimé D | Print resin (Sla) ou nylon (SLS) moules; post-process with sanding to smooth surfaces. | Fast lead time (1–2 jours), faible coût (\(100- )300 par moisissure), easy to modify for complex shapes. | Low durability (20–50 cycles), limited to soft rubbers like liquid silicone. | Single or small batches (1–10 unités) de parties complexes (Par exemple, irregular-shaped TPU overlays). |
Astuce: Pour le prototypage, start with a 3D-printed mold if you need to test 1–5 units quickly. Switch to a CNC mold if you require 20+ prototypes identiques (Par exemple, for user testing).
3. Processus de moulage: Select Based on Rubber Type & Taille de pièce
The molding method determines the prototype’s precision, élasticité, et coûter. Choose from three common processes based on your material and application:
3.1 Liquid Silicone Injection Molding (LSR)
- Matériaux applicables: Silicone liquide (30°–70° Shore hardness).
- Étapes de traitement:
- Mix liquid silicone (Partie A + Part B) dans un 1:1 rapport.
- Inject the mixture into a preheated mold (150°C–200°C).
- Cure for 5–15 minutes (en fonction de l'épaisseur).
- Demold and trim excess material.
- Avantages: Haute précision (ideal for micro-parts like phone waterproof rings), excellent elasticity, and no post-curing needed.
- Idéal pour: Transparent medical parts (Par exemple, infusion tube fittings) and high-precision seals.
3.2 Solid Rubber Pressing
- Matériaux applicables: Natural rubber, EPDM, and silicone rubber sheets.
- Étapes de traitement:
- Cut rubber sheets into the approximate shape of the mold cavity.
- Heat the sheets to 120°C–180°C to soften them.
- Press the softened rubber into the mold with 10–20 MPa pressure.
- Cool for 10–20 minutes, then demold.
- Avantages: Faible coût, fast for large parts (Par exemple, automotive shock absorbing pads), and suitable for aging-resistant materials like EPDM.
- Idéal pour: Sealing strips (Par exemple, joints de porte) and large slip-resistant mats.
3.3 Polyurethane Casting (UR)
- Matériaux applicables: Polyurethane elastomers (TPU, TPE).
- Étapes de traitement:
- Mix AB components (résine + hardener) dans un 1:1 rapport.
- Degas the mixture under vacuum (-0.1MPA) Pour éliminer les bulles d'air.
- Pour the mixture into the mold slowly to avoid eddy currents.
- Guérir à température ambiante (24 heures) or heat (80° C pour 2 heures).
- Avantages: Mimics rubber’s flexibility, perfect for cladding metal/plastic parts (Par exemple, power tool handles with metal cores).
- Idéal pour: Overmolded prototypes (Par exemple, silicone-coated plastic buttons).
Table de comparaison: Molding Process Selection Guide
Type de pièce | Recommended Process | Exemple de matériel | Délai de mise en œuvre |
Micro-seals (≤5 mm) | LSR | Silicone liquide | 1–2 jours |
Large shock pads (≥200mm) | Solid Rubber Pressing | EPDM | 2–3 jours |
Overmolded grips | Polyurethane Casting | TPU | 1–3 jours |
4. Post-traitement: Refine & Enhance Prototype Quality
Rubber prototypes require targeted post-processing to fix defects, Améliorer les performances, and add functional details.
4.1 Basic Trimming & Débarquant
- Use a sharp blade or grinding wheel to remove excess rubber burrs (common around mold edges). For small parts like silicone earbuds, use tweezers to peel off tiny burrs—avoid sanding (it can damage soft rubber surfaces).
4.2 Secondary Vulcanization (For Silicone)
- Bake silicone prototypes at 150°C–200°C for 2–4 hours. This step improves temperature resistance (par 30%) and aging resistance (extends lifespan by 50%), critical for automotive or outdoor use. Par exemple:
A silicone automotive seal prototype, after secondary vulcanization, withstands 150°C for 1,000 hours without hardening—vs. 500 hours for an unprocessed version.
4.3 Traitement de surface
Add functional or decorative finishes based on your needs:
- Anti-Slip Coating: Spray epoxy-based anti-slip paint on grips to boost friction (reduces slip by 60% for wet surfaces).
- Impression d'écran en soie: Apply logos, hardness labels (Par exemple, “50° Shore”), or warning text (Par exemple, “Medical Grade”).
- Material Bonding: Use rubber-specific adhesives to attach rubber to metal/plastic (Par exemple, a nylon + rubber overlay for a tool handle).
5. Essai & Optimisation: Validate Performance & Résoudre les problèmes
Test the prototype against your initial requirements, and address common problems like bubbles or deformation.
5.1 Key Test Items
Type de test | Comment jouer | Pass/Fail Criteria |
Elasticity Test | Compress the prototype to 50% of its thickness, release, and measure recovery time. | Recovers to original shape in ≤1 second (Par exemple, a shock pad prototype passes this test). |
Essai d'étanchéité | Submerge the prototype in water (for waterproof parts) or apply air pressure (for airtight seals). | No water leakage/air loss after 30 minutes. |
Précision dimensionnelle | Utilisez un étrier pour mesurer les dimensions clés (Par exemple, diameter of a waterproof ring). | Error within ±0.1mm (meets most industrial standards). |
5.2 Solve Common Defects
Défaut | Causes | Correctifs |
Demolding Difficulty | High rubber elasticity, rough mold surface (Rampe >1.6), Aucune pente de projet. | Polish mold to Ra ≤0.8; add 1°–3° draft slope; use silicone-specific release oil. |
Bulles | Air trapped in liquid rubber, fast pouring, no degassing. | Degas rubber under -0.1Vide MPA; pour mixture slowly (≤5ml/second); use a mold with air vents. |
Dimensional Deformation | Température de moule inégale (±>5° C), incorrect shrinkage rate. | Heat mold evenly (use a temperature-controlled oven); adjust 3D model size based on material shrinkage (Par exemple, ajouter 3% for silicone). |
6. Yigu Technology’s Perspective on Rubber Prototype Production
À la technologie Yigu, we’ve found that the biggest challenge in rubber prototype making is balancing flexibility with precision—many clients rush to choose LSR for high precision but overlook cost for small batches. Our approach is to match processes to needs: for 1–5 units of complex parts, we recommend 3D-printed molds + polyurethane casting (fast and cheap); pour 10+ pièces de haute précision, CNC molds + LSR (durable and accurate). Par exemple, a medical client initially chose LSR for a single silicone tube prototype (coût \(300), but we switched to 3D-printed molds + fonderie (coût \)80) sans sacrifier la qualité. We also emphasize pre-testing material compatibility—e.g., ensuring TPE bonds well with ABS before overmolding—to avoid rework. Rubber prototypes thrive on attention to detail; small adjustments (like adding a 2° draft slope) can save days of troubleshooting.
7. FAQ: Common Questions About Making Rubber Prototypes
T1: Can I use 3D printing directly to make rubber prototypes (sans moules)?
A1: Rarely—most 3D-printed “rubber-like” parts (Par exemple, TPU filaments) lack the elasticity and sealing performance of true rubber. Molding processes (LSR, fonderie) are needed to leverage rubber’s natural properties. For simple concept tests, 3D-printed TPU can work, but for functional validation, use mold-made rubber prototypes.
T2: How do I choose between silicone and TPE for my prototype?
A2: Choose silicone for high temperature resistance (jusqu'à 200 ° C) et transparence (Par exemple, dispositifs médicaux, phone waterproof rings). Choose TPE for better wear resistance and lower cost (Par exemple, poignées, pièces de jouets). Par exemple, a baby bottle nipple prototype uses silicone (non toxique, résistant à la chaleur), while a toy car tire prototype uses TPE (moins cher, durable).
T3: Why does my rubber prototype have a sticky surface?
A3: Sticky surfaces are usually caused by incomplete curing (Par exemple, LSR cured at 140°C instead of 160°C) or excess release oil. Correctifs: Re-cure the prototype at 160°C for 1 heure; wipe excess oil with a lint-free cloth. For silicone, secondary vulcanization also eliminates stickiness by removing residual low-molecular-weight compounds.