Qu'est-ce que la technologie de moulage du silicone et ses principales applications?

usinage de commande numérique par ordinateur du polyester PBT

La technologie de moulage du silicone est un processus de fabrication qui transforme le caoutchouc de silicone liquide (LSR) ou des composés de silicone solides en produits façonnés avec précision via un durcissement contrôlé. Il exploite l’élasticité unique du silicone, résistance à la chaleur, et biocompatibilité pour servir les industries de la protection des reliques culturelles aux dispositifs médicaux. Mais qu’est-ce qui rend cette technologie polyvalente, comment sélectionner les bonnes méthodes […]

Silicone molding technology is a manufacturing process that transforms liquid silicone rubber (LSR) ou des composés de silicone solides en produits façonnés avec précision via un durcissement contrôlé. Il exploite l’élasticité unique du silicone, résistance à la chaleur, et biocompatibilité pour servir les industries de la protection des reliques culturelles aux dispositifs médicaux. Mais qu’est-ce qui rend cette technologie polyvalente, how do you select the right methods for specific needs, and how to avoid common production pitfalls?

1. Core Types of Silicone Molding Technology: A Comparative Analysis

Silicone molding technology varies by material state and curing mechanism. The table below breaks down key types, leurs atouts, et utilisations idéales:

Type de technologieKey CharacteristicsAvantagesLimitesIdeal Application Scenarios
Liquid Silicone Rubber (LSR) MoulageUses two-component LSR (mixed 1:1 ou 10:1); cures at 120–180°CHaute précision (±0,01mm); no by-products; fast cycle time (30–60s/part)High equipment cost; requires specialized injection machinesDispositifs médicaux (par ex., composants prothétiques), produits pour bébé (par ex., pacifier nipples)
Solid Silicone Compression MoldingUses pre-cut solid silicone sheets; pressed in molds (160–200°C, 10–20MPa)Low equipment investment; suitable for large parts; facile à mettre à l'échelleLonger curing time (5–10min/part); lower detail resolutionJoints industriels, joints automobiles, large craft molds
Silicone Coating & DippingApplies thin silicone layers via brushing/dipping; cures at room temp or low heatÉpaisseur uniforme (5–500μm); adheres to diverse substrates (métal, fabric)Limited to thin-walled products; slow for thick layersElectronic component waterproofing, cultural relic protective coatings
Vacuum-Assisted Silicone MoldingUses vacuum chambers to eliminate bubbles during pouring; for LSR or solid compoundsNo bubble defects; high surface finish (Ra≤1.6μm)Longer process time; requires vacuum equipmentPrecision jewelry molds, composants optiques, cultural relic replication

2. Material Selection for Silicone Molding: Match to Performance Needs

The success of silicone molding depends on choosing the right silicone type. Below is a guide to material categories and their key parameters:

UN. Silicone Material Categories

Catégorie de matériauPrincipales fonctionnalitésCompliance StandardsTypical Use Cases
Condensation-Cure SiliconeReleases ethanol during curing; faible coût; easy to operateQualité industrielle (no food/medical compliance)Ordinary crafts, non-critical seals
Addition-Cure SiliconeNo by-products; faible retrait (<0.1%); high purityFDA/ISO 10993 (médical); FDA 21 CFR (nourriture)Medical prosthetics, food-contact molds (par ex., chocolate molds)
FluorosiliconeHeat resistance up to 300°C; résistance chimique (acides, huiles)MIL-STD-883 (aérospatial); ASTM D2000 (automobile)Joints aérospatiaux, high-temperature industrial gaskets

B. Critical Material Parameters to Consider

  1. Dureté (Rive A):
  • 5–10°: Ultra-soft (cultural relic cushions, medical skin contact parts)
  • 20–30°: Moyennement doux (resin craft molds, baby product components)
  • 40–60°: Dur (joints industriels, joints automobiles)
  1. Viscosity:
  • Faible (<5,000 cP): Flows into micro-details (jewelry molds, electronic component coatings)
  • Haut (>10,000 cP): Ideal for brushing/dipping (thick protective layers for cultural relics)
  1. Tear Strength:

4kN/m: High-durability needs (reusable molds, frequent-use seals)

  • 2–3kN/m: Budget-friendly, low-cycle products (disposable craft molds)

3. Standardized Workflow of Silicone Molding Technology

A typical silicone molding process follows 5 étapes clés, with strict controls at each step to ensure quality:

Stage 1: Pre-Production Preparation

  1. Prototype & Conception de moules:
  • For uneven substrates (bois, pierre), spray PVA water-soluble release agent to prevent silicone adhesion.
  • Add chamfers (0.5–1mm) to mold edges to avoid stress concentration and tearing.
  • For deep-hole structures, embed magnetic nuts for post-molding positioning.
  1. Configuration de l'outillage:
  • Build a containment frame (glass/acrylic) 10cm taller than the prototype’s highest point to prevent overflow.
  • Reserve a glue injection port (diameter ≥1cm) and serpentine exhaust grooves to release air.

Stage 2: Préparation du matériel & Mixing

  1. Component Mixing:
  • For LSR: Use an electronic scale to weigh AB components (par ex., 1:1 ratio) with ±0.1g accuracy.
  • For solid silicone: Cut compounds into blanks matching the mold’s cavity volume (add 5–10% for compression shrinkage).
  1. Defoaming:
  • Place mixed LSR in a vacuum chamber (-0.1MPa) for 15–20 minutes; repeat 2–3 times at 5-minute intervals for bubble-free results.

Stage 3: Moulage & Guérison

Type de technologieMolding ProcessCuring Parameters
LSR MoldingInject mixed LSR into heated molds (120–150°C) via specialized injection machinesCure time: 30–60s; pression: 5–10MPa
Moulage par compressionPlace solid silicone blanks in molds; apply pressure (10–20MPa) et de la chaleur (160–180°C)Cure time: 5–10min; post-cure at 200°C for 2h to eliminate stress
Coating/DippingBrush/dip substrate in silicone; let stand for 10–15min to levelRoom-temperature cure: 24h; low-heat cure: 60°C for 2h

Stage 4: Démoulage & Post-traitement

  1. Démoulage:
  • Use thin plastic sheets to separate silicone from molds; tap the back gently to vibrate stuck parts.
  • For complex molds, pre-cut guide grooves (depth ≤1/3 of mold thickness) to ease peeling.
  1. Garniture & Finition:
  • Cut excess flash with sharp scissors; sand inner surfaces with 400–600 grit sandpaper for Ra≤1.6μm smoothness.

Stage 5: Contrôle qualité

  • Stabilité dimensionnelle: Measure key dimensions 3 times with a caliper; ensure tolerance within ±0.5%.
  • Qualité des surfaces: Use a roughness meter to verify Ra≤1.6μm; check for pockmarks or bubbles.
  • Performance Testing: For high-cycle products, run dynamic fatigue tests (≥100,000 folds without tearing).

4. Troubleshooting Common Issues in Silicone Molding

Even with precise controls, issues may arise. Below is a cause-and-solution guide for frequent problems:

Problem PhenomenonRoot CausePractical Solution
Surface Pockmarks/ImperfectionsSubstrate contamination (oil/dust); environmental dust adhesionClean prototypes with alcohol; operate in a dust-free workshop.- Apply a thin release agent layer to smooth uneven surfaces.
Uneven ThicknessTurbulence from fast pouring; mold cavity design flawsUse a funnel for slow, layered pouring (1–2cm/min).- Optimize mold vents to balance pressure distribution.
Bubble TrappingInadequate vacuum defoaming; mixing too vigorouslyExtend vacuum time to 20–25min; add a second defoaming cycle.- Stir silicone at 30–50 RPM (avoids air entrapment).
Edge CurlUneven curing shrinkage; high exotherm during moldingSwitch to low-temperature curing (reduce by 10–15°C).- Add a 2-hour post-cure at 60°C to relieve internal stress.
Short Service LifeResin/chemical residue corrosion; UV agingClean molds with steam + neutral detergent after each use.- Store molds in opaque containers (avoids UV exposure); apply talcum powder for long-term storage.

5. Industry-Specific Applications of Silicone Molding Technology

Silicone molding technology solves unique challenges across sectors. Here are key use cases with implementation details:

IndustrieApplication CaseMolding Technology UsedKey Innovations
Cultural Relic ProtectionFragile relic support & shape replicationVacuum-assisted LSR molding (5° Shore A ultra-soft silicone)Embedded optical fiber sensors to monitor relic stress in real time; glass fiber reinforced layer for durability
Dispositifs médicauxCustom orthotic insolesAddition-cure LSR molding (biocompatible grade)3D-scanned prototypes for personalized fit; post-cure at 120°C to meet ISO 10993 normes de biocompatibilité
Toy ManufacturingLimited-edition doll molds (multi-color parts)Modular compression molding (colored silicone)Separate head/body molds with magnetic positioning; colored silicone for easy part identification
ÉlectroniqueCircuit board waterproofingSilicone coating (low-viscosity LSR)Uniform 20μm coating; cures at 80°C to avoid damaging electronic components

6. Yigu Technology’s Perspective on Silicone Molding Technology

Chez Yigu Technologie, we see silicone molding technology as a bridge between precision engineering and creative needs. For cultural relic protection projects, our vacuum-assisted LSR molding (5° Shore A silicone) has successfully replicated 200+ fragile artifacts, with 0.1mm detail accuracy and real-time stress monitoring. Pour les clients médicaux, our addition-cure LSR molding process meets FDA 21 CFR standards, delivering custom prosthetic components with <0.01mm dimensional tolerance.

We’re advancing two key innovations: 1) Developing eco-friendly LSR (reducing VOCs by 35%) for sustainable manufacturing; 2) Integrating AI into mold temperature control (optimizing curing time by 20% while maintaining quality). Our goal is to make silicone molding technology more accessible, efficace, and tailored to industry-specific challenges.

FAQ

  1. What’s the difference between LSR molding and solid silicone compression molding for medical products?

LSR molding is ideal for high-precision, small medical parts (par ex., conseils sur les cathéters) due to its ±0.01mm tolerance and biocompatibility (no by-products). Solid silicone compression molding works for larger parts (par ex., orthotic braces) and has lower equipment costs but longer cycle times. Always choose addition-cure LSR for implantable/skin-contact medical products.

  1. How to extend the service life of silicone molds made via this technology?

Clean molds with steam + neutral detergent (avoid sharp tools) after each use; store in opaque, dry containers (prevents UV aging); apply a thin talcum powder layer for storage over 1 mois. For high-frequency use, add a 2-hour post-cure at 60°C every 50 cycles to refresh elasticity.

  1. Can silicone molding technology be used for high-temperature industrial parts (par ex., 250°C+)?

Yes—use fluorosilicone material (heat resistance up to 300°C) with compression molding (180–200°C cure). Ensure a 4-hour post-cure at 220°C to enhance heat resistance. This setup is suitable for aerospace seals and high-temperature industrial gaskets, meeting MIL-STD-883 standards.

Indice
Faire défiler vers le haut