Qu'est-ce que le moulage en silicone et ses méthodes clés?

usinage CNC de pes de polyéther sulfone

Le moulage du silicone est un procédé de fabrication qui transforme des matières premières silicones liquides ou semi-solides en produits élastomères aux formes et propriétés spécifiques.. Il sert d’épine dorsale à la production de tout, des nécessités quotidiennes (par ex., ustensiles de cuisine) aux pièces industrielles de haute précision (par ex., scellés). Mais avec plusieurs techniques de moulage disponibles, comment choisir le bon […]

Silicone molding is a manufacturing process that transforms liquid or semi-solid silicone raw materials into elastomeric products with specific shapes and properties. Il sert d’épine dorsale à la production de tout, des nécessités quotidiennes (par ex., ustensiles de cuisine) aux pièces industrielles de haute précision (par ex., scellés). Mais avec plusieurs techniques de moulage disponibles, how do you choose the right one for your project, and what key factors ensure success?

1. A Comparison of 6 Core Silicone Molding Methods

Different silicone molding techniques are designed for specific scenarios—from mass production to small-batch customization. The table below breaks down their core features, candidatures, and key controls:

Molding MethodPrincipales fonctionnalitésTypical ApplicationsCritical Control Parameters
Moulage par compressionHaute précision; suitable for complex structures; production de masseHigh-precision seals, joints automobilesTempérature du moule (160–200°C), pression (5–50MPa), vulcanization time
Moulage par injectionHaute efficacité; low scrap rate; automatiséMiniaturized parts (par ex., electronic buttons, conductive connectors)Vitesse d'injection (staged control), mold vacuum exhaust, plasticization temperature
Extrusion MoldingContinuous production; equal-section profilesPipes, sealing strips, rubber hosesDie design, barrel segmented heating, laser diameter monitoring
Gate MoldingFlexible; low-cost for small batchesTransparent crafts, mold prototypes, custom jewelryVacuum defoaming, layered infusion (for thick parts)
Revêtement & ImpregnationMince, uniform coverage; adheres to substratesFabric coating, PCB waterproof films, biomedical coatingsCoating thickness, adhesion (grid test), centrifugation speed (for impregnation)
Special MoldingNovateur; solves complex needsCold runner: zero-waste parts; 3D printing-assisted: complex textures; Co-moulage: silicone + metal/plastic insertsIsolation (cold runner), resin type (3Impression D), insert positioning (co-molding)

2. Step-by-Step Guide to 3 Common Molding Processes

For beginners or those selecting a method, here’s a linear breakdown of three widely used workflows:

UN. Moulage par compression (Ideal for High-Precision Seals)

  1. Préparation du matériel: Weigh raw rubber, charges, and vulcanizing agents per formula; mix evenly via a refiner.
  2. Plasticization: Reduce compound Mooney viscosity using the thin-pass method to improve plasticity.
  3. Preforming: Cut the compound into blanks that match the rough shape of the final product.
  4. Mold Vulcanization: Place blanks into the mold; heat and press in a flat vulcanizing machine (160–200°C, 5–50MPa).
  5. Post-Treatment: Trim excess material; conduct secondary vulcanization to remove volatiles and boost stability.

B. Moulage par injection (Best for Miniaturized, Mass-Produced Parts)

  1. Alimentation: Automatically feed granular or strip compound into the machine’s barrel.
  2. Plasticization: Heat the barrel to soften the compound (temperature varies by silicone type).
  3. Injection: Use high pressure to inject the softened compound into the closed mold cavity.
  4. Packing & Refroidissement: Maintain pressure until the compound is initially cured; cool slightly to set shape.
  5. Démoulage: A manipulator automatically removes the finished product—no manual trimming needed for most designs.

C. Extrusion Molding (Great for Continuous Profiles)

  1. Die Design: Customize the die opening to match the product’s cross-section (par ex., round for pipes, rectangular for strips).
  2. Chauffage & Extrusion: Heat the barrel in segments (front: plasticization; middle: constant temperature; rear: formation); push compound through the die.
  3. Surveillance: Utilisez un laser diameter gauge to real-time check product dimensions and adjust extrusion speed if needed.
  4. Traction & Coupe: Pull the extruded profile via a track system; cut it to the set length automatically.

3. Dépannage: Common Defects & Solutions

Even with proper process design, defects can occur. Below is a cause-and-effect guide to fix the most frequent issues:

Defect PhenomenonRoot CausePractical Solution
Bubble HolesAir trapped during mixing; gas released during vulcanizationUtiliser vacuum defoaming before molding; adopt gradient heating for vulcanization (avoids sudden gas expansion)
Glue Shortage (Incomplete Filling)Low silicone fluidity; insufficient glue injection volumeIncrease injection pressure (for injection molding); optimize gate position to improve flow; preheat silicone slightly
Sticky SurfaceIncomplete vulcanization; mold surface contaminationExtend vulcanization time or raise temperature; clean the mold with a solvent (par ex., alcool isopropylique) avant utilisation
Dimensional DeviationUneven curing shrinkage; inconsistent mold temperatureReserve a 1.5%–3% shrinkage allowance in mold design; ensure uniform mold heating (use temperature sensors)

4. Matériel & Equipment Selection Guide

Choosing the right materials and equipment directly impacts product quality. Use this table to match your needs:

Demand ScenarioRecommended Silicone TypeSupporting Equipment
Food-Grade Products (par ex., silicone spatulas)FDA-certified liquid siliconeVacuum casting equipment (avoids contamination)
High-Precision Seals (par ex., automotive oil seals)Silicone with vapor-phase silica filler (boosts hardness)Precision compression molding machine
Conductive Parts (par ex., electronic buttons)Precipitation-method conductive silicone rubberVertical injection machine + static elimination device
High-Temperature-Resistant Parts (par ex., industrial pipes)Phenyl silicone rubber (resists up to 300°C)Extruder + laser diameter gauge

5. Yigu Technology’s Perspective on Silicone Molding

Chez Yigu Technologie, we see silicone molding as a driver of product innovation—not just a manufacturing step. For clients in healthcare, we’ve optimized coating molding to create biocompatible silicone films for medical devices, assurer 99.8% adhesion and meeting global safety standards. Pour les clients automobiles, notre moulage par compression process reduces seal defect rates to below 0.5% by refining temperature control and using high-purity fillers.

Looking forward, we’ll focus on two priorities: 1) Developing eco-friendly silicone materials that cut waste by 30% et 2) Integrating AI into moulage par injection to real-time adjust parameters, boosting efficiency by 20%. We aim to make silicone molding more sustainable, précis, and accessible for all industries.

FAQ

  1. Which silicone molding method is best for small-batch custom products (par ex., 50–100 unités)?

Gate molding is ideal—it’s low-cost, flexible, and doesn’t require expensive molds. Use additive liquid silicone for high transparency (par ex., custom crafts) and vacuum defoaming to ensure quality.

  1. How to ensure food-grade safety in silicone molding for kitchenware?

D'abord, sélectionner FDA-certified liquid silicone (no toxic additives). Deuxième, use dedicated equipment (avoid cross-contamination with industrial-grade silicone). Troisième, conduct post-production tests (par ex., leachate testing) to meet food safety standards.

  1. What’s the main difference between compression molding and injection molding for silicone parts?

Compression molding is better for complex, pièces de haute précision (par ex., scellés) but has longer cycle times. Injection molding is faster (ideal for mass production of mini parts like buttons) and has lower scrap rates, but requires higher initial mold investment.

Indice
Faire défiler vers le haut