What Is Silicone Mold Injection Molding and Its Key Essentials?

Polyamide PA CNC Usinage

Silicone mold injection molding is an advanced manufacturing technology that uses liquid silicone rubber (LSR) as raw material, injecting it into high-precision molds under controlled temperature and pressure to produce high-quality silicone products. Unlike traditional manual mold making, it excels in mass production, haute précision dimensionnelle, and stable product performance—making it a core process in medical, électronique, et industries automobiles. But what are its core principles? How to control key processes? And how to address its unique challenges? This article answers these questions in detail.

1. Principes de base & Caractéristiques matérielles

To understand silicone mold injection molding, we first break down its working mechanism and the properties of its key raw material—liquid silicone.

UN. Principe de travail principal

The process follows a simple but precise 因果链 (chaîne de cause à effet):

  1. Matière première de fusion: Silicone liquide (two-component: main agent + agent de durcissement) is fed into the injection machine’s barrel, where it is heated to a flowable state (no melting—silicone is thermoset, so this step softens it for injection).
  2. Injection haute pression: The injection machine pushes the softened silicone into a high-precision mold cavity (tolérance ± 0,01 mm) at a controlled speed (5–20mm/s) et la pression (10–50MPa).
  3. Durcissement & Vulcanization: Le moule est chauffé (120–180 ° C) to trigger a chemical reaction in the silicone, turning it from liquid to elastic solid. Curing time depends on product thickness—e.g., 1mm-thick parts take 10–15 seconds; 10mm-thick parts take 60–90 seconds.
  4. Démêlé & Finition: Une fois guéri, Le moule s'ouvre, and the product is ejected. Post-traitement (débarquant, garniture) enlève l'excédent de matière, resulting in a finished part.

B. Matériel clé: Liquid Silicone Rubber (LSR)

LSR’s unique properties determine the process’s advantages. The table below highlights its critical characteristics:

Material CharacteristicPerformances spécifiquesRole in Injection Molding
FluidityLow viscosity (5,000–20,000 cP)Flows into micro-details of the mold (Par exemple, 0.1mm-thick sealing lips)
Résistance à la chaleurWithstands -60°C to +250°C (short-term +300°C)Suitable for high-temperature applications (Par exemple, automotive engine gaskets)
Stabilité chimiqueRésiste aux acides, alcalis, huiles, et solvantsIdéal pour les dispositifs médicaux (sterilized with alcohol) and electronic parts (resists coolants)
ÉlasticitéAllongement à la pause >500%; Shore hardness 20–80AEnsures products (Par exemple, boutons du téléphone, Joints joints) maintain flexibility after repeated use
BiocompatibilitéMedical-grade LSR meets FDA 21 CFR §177.2600Safe for skin-contact products (Par exemple, baby pacifiers, medical catheters)

2. Processus de production étape par étape

Silicone mold injection molding follows a standardized, linear workflow—each step requires strict parameter control to avoid defects.

Étape 1: Préparation des matières premières & Essai

  • Component Mixing: Blend LSR main agent and curing agent in a precise ratio (commun 1:1 ou 10:1) using an automated mixer. For colored products, add 1–3% non-toxic pigments to the mixture.
  • Inspection de qualité: Conduire 3 key tests:
  1. Viscosity Test: Ensure viscosity is 5,000–15,000 cP (too high = poor flow; too low = leakage).
  2. Curing Test: Cure a small sample at 160°C for 30 seconds—check for full solidification (no sticky surface).
  3. Impurity Check: Filter the mixture through a 5μm sieve to remove particles (prevents mold clogging).

Étape 2: Conception de moisissure & Fabrication

Molds are theheartof the process—their precision directly impacts product quality.

  • Considérations de conception:
  • Emplacement de la porte: Placer les portes (injection inlets) at thick sections to avoid air traps. Pour petites pièces (Par exemple, connecteurs électroniques), use pinpoint gates (0.5–1 mm de diamètre).
  • Circuit de refroidissement: Add water channels around the cavity to control mold temperature (±2°C tolerance)—prevents uneven curing.
  • Traitement de surface: Apply chrome plating (5–10μm thickness) or nitriding to the mold surface. This improves wear resistance (prolonge la durée de vie du moule à 100,000+ cycles) and release performance (reduces sticking).
  • Manufacturing Equipment: Use CNC machining centers (précision ±0,005 mm) to mill the mold cavity. Pour des formes complexes (Par exemple, composants de dispositifs médicaux), add EDM (Usinage à décharge électrique) for micro-details.

Étape 3: Injection Molding Parameter Setup

Key parameters must be optimized—incorrect settings cause defects like bubbles or shrinkage. The table below lists critical parameters and their ideal ranges:

ParamètreGamme idéaleImpact des paramètres incorrects
Température du baril40–60 ° C (zone 1: 40° C; zone 2: 50° C; zone 3: 60° C)Trop haut (>70° C) = premature curing (blocks the barrel); trop bas (<30° C) = poor flow
Pression d'injection15–30MPaTrop haut (>40MPA) = mold deformation; trop bas (<10MPA) = incomplete cavity filling
Vitesse d'injection8–15mm/s (staged: slow start → fast middle → slow end)Trop vite (>20mm / s) = air trapping (bulles); trop lentement (<5mm / s) = cold slugs (uneven texture)
Température de moisissure140–160 ° CTrop haut (>180° C) = over-curing (parties cassantes); trop bas (<120° C) = under-curing (sticky surface)
Temps de durcissement10–120 secondes (1 second per mm of thickness)Too short = under-curing; too long = reduced production efficiency

Étape 4: Durcissement, Démêlé & Post-traitement

  • Durcissement: The mold remains closed for the set time—use a mold temperature controller to maintain stable heat.
  • Démêlé: Use robotic ejectors (pour la production de masse) or manual tools (pour les petits lots) Pour éliminer les pièces. Apply a thin layer of silicone release agent if sticking occurs (avoid excess—causes surface defects).
  • Post-traitement:
  1. Débarquant: Trim gate residues with a laser cutter (pour les pièces de précision) or sharp scissors (pour les pièces non critiques).
  2. Nettoyage: Wash parts with deionized water to remove release agent residue.
  3. Secondary Vulcanization (Facultatif): Pour les pièces à haute température (Par exemple, sceaux automobiles), bake at 200°C for 2–4 hours to improve heat resistance.

3. Avantages & Défis: Une analyse comparative

Silicone mold injection molding has clear strengths compared to traditional manufacturing methods (Par exemple, moulage par compression, manual casting). It also faces unique challenges—understanding both helps users decide if it’s the right process.

UN. Advantages Over Traditional Methods

AvantageSilicone Mold Injection MoldingMoulage par compressionManual Casting
Efficacité de productionHaut (30–60 parts per minute for small components)Moyen (5–10 parts per minute)Faible (1–2 parts per hour)
Précision dimensionnelle± 0,01 mm (ideal for precision parts)± 0,1 mm (limited by mold pressure)± 0,5 mm (human error)
Product Consistency99.5% uniformité (processus automatisé)90% uniformité (dépend de la compétence de l'opérateur)70% uniformité (high variability)
Manipulation de la complexitéExcellent (can produce parts with undercuts, micro-trous)Pauvre (requires split molds for complexity)Très pauvre (limited to simple shapes)
DéchetsFaible (<5% scrap—excess can be recycled)Moyen (10–15% scrap)Haut (20–30% scrap)

B. Défis clés & Stratégies d'atténuation

DéfiCause premièreStratégie d'atténuation
Investissement initial élevéMold manufacturing (Usinage CNC + traitement de surface) frais \(10,000- )100,000; injection machines cost \(50,000- )200,000– Pour les petits lots: Use shared molds (reduces cost by 50%).- Pour les projets à long terme: Choose high-wear-resistant mold materials (Par exemple, Acier H13) to extend life (100,000+ cycles)
Mold CloggingImpurities in LSR or low fluidityFilter LSR through 5μm sieves before injection.- Preheat LSR to 50°C (improves fluidity)
Bubble FormationAir trapped during injection or incomplete ventingAdd vent grooves (0.01–0.02mm depth) to the mold.- Use vacuum-assisted injection (removes air from the cavity)
Shrinkage DefectsUneven cooling or over-curingOptimize mold cooling channels (ensure uniform temperature).- Add 1–2% shrinkage allowance to the mold design

4. Champs d'application: Où ça brille

Silicone mold injection molding is widely used in industries that demand precision, durabilité, et biocompatibilité. The table below highlights key applications with specific examples:

IndustrieTypical ProductsLSR GradeKey Process Requirements
Dispositifs médicauxConseils de cathéter, surgical instrument gaskets, baby pacifiersMedical-grade (FDA 21 CFR §177.2600)Cleanroom production (Classe 100,000).- No release agent (avoids contamination).- Biocompatibility testing post-production
ÉlectroniquePhone buttons, LED lamp seals, sensor O-ringsDe qualité industrielle (high insulation)– Haute précision (±0.005mm for button travel).- Low volatility (no VOCs to damage electronics)
AutomobileEngine gaskets, fuel system seals, Composants du tableau de bordHigh-temperature grade (resists 250°C)– Résistance chimique (aux huiles, liquide de refroidissement).- Vibration resistance (élongation >500%)
Biens de consommationSilicone kitchen utensils (spatulas), waterproof watch bandsQualité alimentaire (Approuvé par la FDA)Non-toxic pigments.- Surface lisse (Rampe <0.8µm) pour un nettoyage facile

5. Yigu Technology’s Perspective on Silicone Mold Injection Molding

À la technologie Yigu, we see silicone mold injection molding as a cornerstone of high-precision manufacturing—especially for industries like medical and automotive. Pour les clients médicaux, our custom injection molds (tolérance ± 0,008 mm) and medical-grade LSR have enabled the production of 100,000+ catheter tips with 0% biocompatibility failures. For automotive partners, our high-temperature LSR (resists 280°C) and optimized cooling systems reduce engine gasket shrinkage to <0.5%, improving product lifespan by 30%.

We’re addressing key challenges by: 1) Developing low-cost mold materials (Par exemple, coated aluminum) that cut mold costs by 40% Tout en maintenant 50,000+ cycles; 2) Integrating AI into parameter control (automatically adjusts temperature/pressure to reduce defects by 25%). Our goal is to make this technology accessible to mid-sized businesses—balancing precision with affordability.

FAQ

  1. Quelle est la quantité de commande minimale (MOQ) for silicone mold injection molding?

MOQ depends on mold cost: Pour les pièces standard (Par exemple, Joints joints), MOQ is 10,000–50,000 units (Pour compenser les coûts de moisissure). Pour les pièces personnalisées, we offer shared molds with MOQ as low as 1,000 unités (ideal for small-batch testing).

  1. Can silicone mold injection molding produce transparent silicone products?

Yes—use high-purity LSR (impurity content <0.1%) and polished molds (Rampe <0.02µm). We’ve produced transparent medical connectors with 90% transmittance légère, meeting optical requirements for device visualization.

  1. How long does it take to develop a custom silicone mold and start production?

Mold development takes 4–6 weeks (Usinage CNC + essai). After mold approval, production can start within 1 semaine. Pour des projets urgents (Par exemple, medical device emergencies), we offer expedited mold development (2–3 semaines) with priority production.

Indice
Faites défiler en haut