Qu'est-ce qui affecte la rugosité des surfaces photopolymérisables imprimées en 3D? Un guide complet

impression 3D électronique

Si vous travaillez avec des pièces photopolymérisables imprimées en 3D, que ce soit pour des prototypes, modèles médicaux, ou des bijoux : comprendre la rugosité de la surface est essentiel pour répondre aux besoins de qualité et fonctionnels. Impression 3D photopolymérisable (comme SLA et DLP) est connu pour ses détails élevés, mais sa rugosité de surface peut varier considérablement de Ra 0.5 µm en Ra 5 μm en fonction de facteurs clés. […]

Si vous travaillez avec des pièces photopolymérisables imprimées en 3D, que ce soit pour des prototypes, modèles médicaux, ou des bijoux : comprendre la rugosité de la surface est essentiel pour répondre aux besoins de qualité et fonctionnels. Impression 3D photopolymérisable (comme SLA et DLP) est connu pour ses détails élevés, but its surface roughness can vary widely from Râ 0.5 µm en Ra 5 µm depending on key factors. This guide breaks down typical roughness ranges, principaux facteurs d’influence, practical application standards, and actionable tips to improve surface quality.

1. Typical Roughness Ranges for 3D Printed Light-Cured Surfaces

Impression 3D photopolymérisable (SLA and DLP) produces smoother surfaces than many other technologies (par ex., FDM), but the exact roughness depends on technology type, paramètres, et matériaux. Below is a detailed breakdown of standard ranges:

Type de technologieTypical Roughness (Râ)Optimal Roughness (With Optimization)Key Advantages for Surface Quality
ANS (Stereolithic)1 μm ~ 3 µm< 1 µmHigh laser precision, minimal layer lines
DLP (Traitement numérique de la lumière)1 μm ~ 5 µm~ 1 µm (High-Resolution DLP)Fast printing; 4K projectors narrow roughness gaps with SLA
General-Purpose Resin (Any Tech)2 μm ~ 5 µm1 μm ~ 2 µm (With Post-Processing)Rentable; suitable for non-critical prototypes
High-Precision Resin (par ex., Dentaire)< 1 µm0.5 μm ~ 1 µm (With Fine Tuning)Low shrinkage; ideal for medical or jewelry parts

Note: Râ (Average Surface Roughness) is the most common metric—lower values mean smoother surfaces. Pour référence, a polished metal surface has an Ra of ~0.02 μm, while a standard light-cured part (without post-processing) falls between 1 μm ~ 3 µm.

2. 4 Core Factors That Impact Light-Cured Surface Roughness

Surface roughness isn’t random—it’s shaped by controllable factors. Understanding these lets you adjust parameters to achieve your desired smoothness. Below is a breakdown with specific examples and data:

(1) Printing Technology & Equipment Precision

The type of light-curing technology and device resolution directly affect surface quality:

  • ANS: Uses a focused UV laser to cure resin layer by layer. Industrial-grade SLA machines (par ex., Stratasys) have laser spot sizes as small as 0.02 mm, producing surfaces with Ra < 1 µm. Consumer-grade SLA machines may have larger spots (0.05 mm ~ 0.1 mm), leading to Ra 2 μm ~ 3 µm.
  • DLP: Uses a projector to cure entire layers at once. Resolution matters here—4K DLP projectors (with smaller pixel sizes) can reach Ra ~ 1 µm, while 1080p projectors may result in Ra 3 μm ~ 5 μm due to visible pixel edges.

(2) Paramètres d'impression

Even with the right equipment, poor parameter settings can ruin surface smoothness. The two most critical parameters are:

Épaisseur de couche

Thinner layers mean fewer visible layer lines, but overly thin layers can cause resin flow issues. Here’s how layer thickness impacts roughness:

Épaisseur de coucheTypical Roughness (Râ)Notes
0.025 mm0.5 μm ~ 1 µmIdeal for high-detail parts (par ex., bijoux)
0.05 mm1 μm ~ 2 µmBalances smoothness and print speed
0.1 mm2 μm ~ 3 µmFast printing; visible layer lines
> 0.1 mm3 μm ~ 5 µmOnly for rough prototypes

Exposure Time

  • Insufficient exposure: Resin doesn’t cure fully, leaving sticky, surfaces inégales (Ra can jump to 4 μm ~ 6 µm).
  • Overexposure: Resin shrinks excessively, causing warping or surface cracks (Ra increases by 1 μm ~ 2 µm).

Best practice: Follow the resin manufacturer’s recommended exposure time (par ex., 5 seconds per layer for standard resin).

(3) Resin Material Properties

Not all resins are equal—formulation affects shrinkage and surface finish:

  • Rétrécissement: Most resins shrink 2% ~ 8% pendant le durcissement. High-shrinkage resins (par ex., general-purpose resin) pull the surface unevenly, leading to Ra 2 μm ~ 5 µm. Low-shrinkage resins (par ex., dental-specific resin) shrink < 2%, producing Ra < 1 µm.
  • Resin Type:
  • General-purpose resin: Râ 2 μm ~ 5 µm; affordable but rough.
  • High-precision resin (par ex., for medical models): Râ < 1 µm; formulated for minimal shrinkage.
  • Flexible resin: Slightly higher roughness (Râ 1.5 μm ~ 3 µm) due to elastic properties.

(4) Post-Processing Processes

Post-processing is the final step to refine surface roughness—even a rough printed part can become smooth with the right treatments:

Post-Processing StepRoughness Reduction (Râ)Fourchette de coût (RMB/Piece)Idéal pour
Simple Cleaning (Isopropyl Alcohol)0.5 μm ~ 1 µm5 ~ 10Removes uncured resin; basic smoothness
Ponçage (1200 ~ 2000 Grit Sandpaper)2 μm ~ 4 µm20 ~ 50Eliminates layer lines; Ra drops from 5 μm à < 1 µm
Polissage (Polishing Paste)0.3 μm ~ 0.5 µm30 ~ 80Finition effet miroir; ideal for jewelry
Secondary UV Curing0.2 μm ~ 0.5 µm10 ~ 30Reduces stickiness; improves surface uniformity
Pulvérisation (Clear Coat)0.5 μm ~ 1 µm40 ~ 100Fills micropores; adds protection

3. Surface Roughness Standards for Practical Applications

Different use cases require different levels of smoothness. Below are common applications and their recommended roughness:

Application TypeRequired Roughness (Râ)Post-Processing Needed?Key Reasoning
Basic Prototypes (par ex., part fit checks)2 μm ~ 5 µmNonSmoothness isn’t critical; saves time/cost
Aesthetic Parts (par ex., custom figurines)1 μm ~ 2 µmOui (Ponçage + Polissage)Visible surface quality matters
Medical Models (par ex., couronnes dentaires)0.5 μm ~ 1 µmOui (High-Precision Polishing)Prevents bacterial growth; ensures biocompatibility
Bijoux (par ex., pendants)< 1 µmOui (Polissage + Clear Coat)Mirror finish enhances appearance
Pièces fonctionnelles (par ex., petits engrenages)1 μm ~ 2 µmOui (Ponçage)Réduit les frottements; improves part longevity

4. 5 Step-by-Step Tips to Improve Light-Cured Surface Roughness

If your parts are too rough, follow these actionable steps to optimize smoothness:

  1. Choose the right technology: Use industrial-grade SLA or 4K DLP for Ra < 1 µm; avoid low-resolution DLP machines for high-detail parts.
  2. Set thin, but not too thin, layers: Start with 0.05 mm layers (balances smoothness and speed); utiliser 0.025 mm for critical parts.
  3. Select low-shrinkage resin: Opt for dental or high-precision resin instead of general-purpose resin to reduce surface warping.
  4. Master exposure time: Test 3–5 exposure times (par ex., 4s, 5s, 6s) to find the sweet spot—avoid under/overexposure.
  5. Invest in post-processing: For Ra < 1 µm, sand with 1200 grit sandpaper, then polish with a microfiber cloth and polishing paste.

Yigu Technology’s Perspective on Light-Cured Surface Roughness

Chez Yigu Technologie, we believe balance between precision, coût, et les besoins des applications is key to managing light-cured surface roughness. Many clients overspend on ultra-thin layers or expensive post-processing when their parts don’t require it—for example, en utilisant 0.025 mm layers for basic prototypes (unnecessary for Ra 2 μm ~ 5 µm). Our team helps clients match parameters to their use case: for dental models, we recommend industrial SLA + low-shrinkage resin + high-precision polishing (achieves Ra 0.5 μm ~ 1 µm); pour les prototypes, we suggest 0.1 mm layers + pas de post-traitement (enregistre 30% ~ 50% of time/cost). We also provide resin testing kits to let clients compare shrinkage and roughness before full-scale production—ensuring they get the right smoothness without overpaying.

FAQ

  1. Can DLP ever be smoother than SLA for light-cured parts?

Yes—high-resolution 4K DLP machines (with pixel sizes < 0.01 mm) can reach Ra ~ 1 µm, matching mid-grade SLA machines. Cependant, industrial-grade SLA (with smaller laser spots) still outperforms DLP for ultra-smooth surfaces (Râ < 1 µm).

  1. Why does overly thin layer thickness (par ex., < 0.02 mm) increase roughness?

Thinner layers require more frequent resin refilling, which can cause uneven resin levels across the build plate. This leads to inconsistent curing and visible surface defects, pushing Ra up by 1 μm ~ 2 μm compared to 0.025 mm layers.

  1. How much does post-processing (ponçage + polissage) reduce roughness?

For a part with initial Ra 5 µm (depuis 0.1 mm layers + general resin), sanding with 1200 grit sandpaper can drop Ra to 1 μm ~ 2 µm. Adding polishing paste further reduces it to < 1 μm—total roughness reduction of 80% ~ 90%.

Indice
Faire défiler vers le haut