Qu'implique un post-traitement efficace du moulage sous pression?

impression 3D en nylon

Dans la production de moulage sous pression, qu'il s'agisse de boîtiers de moteur de véhicules à énergie nouvelle ou de modules de refroidissement de stations de base 5G, le post-traitement du moulage sous pression est l'étape finale qui transforme les pièces moulées brutes en hautes performances., pièces prêtes à être commercialisées. Il corrige les défauts de moulage, optimise la qualité de la surface, et garantit que les pièces répondent aux normes de conception. Cet article détaille ses objectifs fondamentaux, processus clés, contrôle de qualité […]

In die casting production—whether for new energy vehicle motor housings or 5G base station cooling modules—post-processing of die casting is the final step that turns raw castings into high-performance, pièces prêtes à être commercialisées. Il corrige les défauts de moulage, optimise la qualité de la surface, et garantit que les pièces répondent aux normes de conception. Cet article détaille ses objectifs fondamentaux, processus clés, quality control methods, defect solutions, and cost-saving tips, helping you build a efficient post-processing workflow.

1. What Are the Core Goals and Principles of Die Casting Post-Processing?

Post-processing isn’t random—it follows clear goals and principles to avoid rework and ensure consistency.

1.1 Core Goals

The work focuses on four key objectives, tailored to part functions:

  • Eliminate Casting Defects: Fix issues like shrinkage, pores, and flash left from casting.
  • Optimize Surface Quality: Achieve smooth finishes or protective coatings for appearance and durability.
  • Adjust Mechanical Properties: Boost strength, dureté, or creep resistance through heat treatment.
  • Meet Design Accuracy: Ensure dimensions, platitude, and other specs match engineering requirements.

1.2 Guiding Principles

To prevent secondary damage and save time, two rules are non-negotiable:

  • “Rough First, Then Fine”: Do heavy-duty work (like cutting sprues) d'abord, then precision tasks (like grinding). This avoids scratching finished surfaces.
  • “Inside First, Then Outside”: Machine internal features (like holes) before external ones. Internal machining is more likely to cause minor deformation, which can be corrected when finishing the exterior.

2. What Are the Key Processes in Die Casting Post-Processing?

Post-processing has five core steps, each with specific techniques and parameters. Below is a detailed breakdown for industrial use:

2.1 Sprue, Riser, and Flash Removal

This step cleans up excess material from casting. The method depends on production volume and precision needs:

Production BatchRecommended MethodAvantages clésCritical Parameters
Mass ProductionAutomatic Stamping & TonteHaute efficacité (1000+ pièces/heure); Flat cross-sectionsRetain 1-2mm margin to protect the part body; Cut angle <5°
Small-Medium BatchesGrinding Wheel/Diamond Saw CuttingFlexible (works for odd-shaped parts); Low equipment costUse diamond blades for aluminum alloys to reduce burrs
High-Precision PartsFive-Axis Laser CuttingNo deformation risk; Cuts complex shapesLaser power: 500-1000W; Cutting speed: 100-300mm/min

Note: Utiliser cold cutting for aluminum-magnesium alloys to avoid heat-affected zones that weaken the part.

2.2 Surface Treatment Combinations

Surface treatment improves appearance, résistance à la corrosion, et fonctionnalité. Choose based on material and part use:

Treatment LevelTechniquesKey SpecificationsSuitable MaterialsAvantages
Basic TreatmentVibration Grinding (ceramic medium + alkaline solution)- Sablage (ASTM B243 ALMEN standard)- Chemical Degreasing (ultrasound-assisted)Deburrs edges- Ra=3.2-6.3μm (sablage)- Contact angle <5° (dégraissage)All die casting metalsPrepares surfaces for advanced treatments; Removes oil/dirt
Advanced Treatment– Anodisation- Micro-Arc Oxidation- Revêtement en poudre- GalvanoplastieCorrosion resistance ×3 (anodisation)- Hardness HV≥800 (micro-arc oxidation)- Salt spray test >1000h (revêtement en poudre)- Gloss 90GU (galvanoplastie)– Anodisation: Alliages d'aluminium- Micro-arc oxidation: Al/Mg/Ti alloys- Revêtement en poudre: Tous les métaux- Galvanoplastie: Copper/zinc alloysTailored to needs—e.g., anodizing for automotive parts; electroplating for decorative components

2.3 Usinage de précision

This step refines dimensions and shapes. Success depends on clamping strategies and parameter optimization:

2.3.1 Clamping Strategies for Different Part Types

Part TypeClamping MethodPrécisionUse Case
Thin-Walled Parts (<3mm)Vacuum Suction Cup + Honeycomb Support PadPrevents deformationAluminum alloy laptop casings
Irregular-Shaped Parts3D-Printed Custom FixturesError <0.02mm5G base station cooling modules
Multi-Process PartsZero-Point Positioning SystemRepeat positioning <0.01mmNew energy vehicle motor housings

2.3.2 Optimized Machining Parameters

MatérielProcess TypeFeed per Tooth (mm)Depth of Cut (mm)Cutting Speed (m/mon)Cooling Method
Alliage d'aluminiumRoughing0.15-0.250.8-1.2N / ALow-temperature compressed air + micro-lubrication
Acier inoxydableFinitionN / ARadial <0.580-120Same as above

2.4 Heat Treatment Strengthening

Heat treatment boosts mechanical properties. Use material-specific schemes:

MatérielHeat Treatment SchemeKey ParametersRésultats
A380 Aluminum AlloyT6 Solution Aging535±5°C for 8-12h; Quench transfer <30sTensile strength σb=320MPa; Elongation δ=8%
ZAM4-1 Magnesium AlloyT6 Artificial Aging415±5°C for 24h; Inert gas protectionBrinell hardness HB=90; Creep resistance ↓40%
ZA27 Zinc AlloyAge Hardening90-120°C for 4-8h; Temperature < eutectic pointRockwell hardness HRB=95; Stabilité dimensionnelle

Critical Notes: Magnesium alloys need inert gas to avoid oxidation; Zinc alloys must not exceed eutectic temperature (causes melting).

2.5 Special Processing

For residual stress relief and sealing protection:

ButTechniquesParametersAvantages
Residual Stress ReliefVibration Aging- Cryogenic TreatmentFrequency 2-50kHz; Amplitude 15-50μm- -196°C liquid nitrogen for 48hFatigue life ×2-3 (alliages d'aluminium); Prevents long-term deformation
Sealing ProtectionSilicone Rubber Impregnation (VIPI)- PARYLENE Vapor DepositionPressure resistance IP68- Film thickness 5-25μmWaterproof/dustproof; Protects electronics (par ex., boîtiers de capteurs)

3. How to Control Quality in Die Casting Post-Processing?

Quality control ensures parts meet standards. Use the right tools and tests:

Quality AspectTesting MethodStandards/Requirements
Précision dimensionnelleMachine de mesure de coordonnées (MMT)GB/T 6414 CT7
Air TightnessHE High-Pressure Leak DetectionLeakage rate <1cm³/min@0.3MPa
Rugosité de la surfaceWhite Light InterferometerDecorative surfaces: Ra≤0.8μm
Coating AdhesionGrid Test + Tape PeelingASTM D3359 Method B
Internal DefectsX-Ray Fluorescence + CT ScanningOIN 17636-1 Level B

4. How to Fix Common Post-Processing Defects?

Defects like shrinkage or pores can be resolved with targeted solutions:

DefectCauseSolution
Rétrécissement (X-ray cloud-like shadows)Insufficient cooling during castingAdd cooling inserts; Extend holding time to 8-12s
Peeling (séparation des couches)Large mold temperature gradientUse mold temperature controller to keep inlet/outlet temp difference <5°C
Pores (tiny air bubbles)Trapped air during castingAdd more exhaust grooves; Adjust backpressure valve
DeformationResidual stress releaseManual aging treatment; Use calibration fixtures
Low Hardness (CRH<48)Inadequate heat treatmentLaser cladding with TSN coating (hardness HRC62)

5. How to Control Costs and Cycles in Post-Processing?

Post-processing accounts for a large portion of total costs—optimize to save money and time:

Post-Processing StepCost ShareCycle ShareOptimization TipsRésultats
Basic Treatment15-25%20-30%Use automatic rolling grinding linesManpower saved by 70%
Traitement de surface20-35%15-25%Build coating recycling systemsConsumables reduced by 40%
Usinage de précision30-40%30-40%Adopt turn-mill composite machining centersCycle time shortened by 50%
Contrôle qualité5-10%5-10%Replace manual checks with AI visual inspectionMissed detection rate <0.1%

6. Yigu Technology’s Perspective on Post-Processing of Die Casting

Chez Yigu Technologie, we see post-processing of die casting as the “value-adding bridge” between raw castings and high-quality parts. Our data shows 70% of part failures stem from rushed or mismatched post-processing—e.g., using heat treatment on porous aluminum parts causes cracking.

We recommend a “process-material matching” approach: For ADC12 aluminum alloy motor housings, we pair T6 heat treatment with precision boring to hit flatness <0.05mm/100mm; For Zamak5 zinc alloy medical handles, we use nano-chrome plating + laser engraving to meet ISO 10993 normes de biocompatibilité. By integrating automation (like AI inspection) and material-specific schemes, we help clients cut costs by 25% while improving part reliability.

7. FAQ: Common Questions About Post-Processing of Die Casting

Q1: Can all die casting materials use the same surface treatment?

Non. Par exemple, anodizing only works on aluminum alloys (it forms an oxide layer), while micro-arc oxidation is better for Al/Mg/Ti alloys. Zinc alloys are often electroplated for decoration, but powder coating works for most metals—always match the treatment to the material and part function.

Q2: Why is quench transfer time critical for aluminum alloy heat treatment?

Alliages d'aluminium (like A380) need fast quenching after solution treatment to trap strengthening elements. If transfer time exceeds 30 secondes, elements precipitate early, reducing tensile strength by up to 20%. We use automated quenching systems to keep transfer time <25 secondes.

Q3: How to reduce deformation in thin-walled die casting post-processing?

Use three methods: 1) Clamp with vacuum suction cups + honeycomb pads to spread pressure; 2) Use low cutting speeds (50-80m/min for aluminum) to minimize force; 3) Add a cryogenic treatment step (-196°C for 24h) to release residual stress before precision machining. These cut deformation by 60%.

Indice
Faire défiler vers le haut