Choosing the right material for plastic prototype molds directly impacts the mold’s durability, vitesse de production, précision, et le coût. There is no “one-size-fits-all” option—materials vary based on project needs like production quantity, complexité de la pièce, exigences de précision, et budget. Cet article détaille les matériaux les plus courants, leurs avantages et inconvénients, cas d'utilisation, and a step-by-step guide to select the best fit.
1. Common Materials for Plastic Prototype Molds (Comparison Table)
Below is a comprehensive overview of 6 widely used materials, including their key traits and application scenarios:
| Catégorie de matériau | Specific Types | Avantages clés | Main Disadvantages | Ideal Application Scenarios |
| Alliage d'aluminium | 6061, 7075 | – Léger (easy to handle) – Excellente usinabilité (production rapide) – Good thermal conductivity (faster cooling for parts) | – Low hardness (wears quickly) – Not suitable for high-volume production | Small/medium-sized prototypes, trial samples, appearance parts (par ex., phone case prototypes) |
| Acier | P20, H13, 45# Acier | – Haute dureté (résistant à l'usure) – Suitable for medium/large molds – Résistant à la chaleur (works with thermoplastics) | – Lourd (hard to transport/operate) – Long processing cycle – High cost | Pièces fonctionnelles, complex-structure prototypes, high-volume production molds (par ex., automotive component molds) |
| Bakélite (Phénolique) | Phenolic resin-based | – Faible coût (budget-friendly) – Easy to process (fast mold making) | – Low strength (prone to breakage) – Poor wear resistance – Low precision | Low-precision, petit lot, non-functional prototypes (par ex., simple shape test parts) |
| Epoxy/Polyurethane Resin | Résine époxy, polyuréthane | – Prototypage rapide (durcissement rapide) – Suitable for soft molds – Faible coût pour les petits lots | – Low strength (not durable) – Not for high-precision or long-term use | Simple-shape prototypes, pièces extérieures, temporary molds (par ex., short-term trial production molds) |
| Copper/Beryllium Copper Alloy | Cuivre pur, cuivre-béryllium | – Excellente conductivité thermique (fast part cooling) – Good precision retention | – High cost (expensive material) – Difficult to process (needs specialized tools) | Thin-walled parts, composants de précision, molds requiring fast cooling (par ex., high-precision electronic part molds) |
| 3D Matériaux d'impression | Photosensitive resin, nylon | – No traditional machining needed (direct 3D printing) – Ideal for complex shapes – Fast prototyping for small batches | – Limited strength (not wear-resistant) – Not suitable for high-volume production | Complex-shape prototypes, small-batch rapid molds (par ex., intricate medical device prototype molds) |
2. Key Factors to Consider When Selecting Materials
To avoid 选错 materials (and wasting time/money), follow this 4-step, cause-effect driven guide—each factor directly influences your material choice:
Étape 1: Define Production Quantity
- Petits lots (1–50 pièces): Choisir alliage d'aluminium, résine époxy, ou 3D printing materials (production rapide, faible coût).
- Grands lots (500+ parties): Optez pour acier (résistant à l'usure, durable enough for repeated use).
- Lots moyens (50–500 pièces): Balance with alliage d'aluminium (if precision needs are moderate) ou low-cost steel (if durability is critical).
Étape 2: Assess Precision Requirements
- Haute précision (±0.01mm or tighter): Utiliser acier (stable dimension retention) ou copper/beryllium copper alloy (excellent precision for small parts).
- Moderate precision (±0,1mm): Alliage d'aluminium ou 3D printing with photosensitive resin works well.
- Low precision (±1mm): Bakélite ou résine époxy is sufficient (budget-friendly).
Étape 3: Evaluate Budget Constraints
- Low budget: Prioritize bakelite, résine époxy, ou entry-level 3D printing materials (nylon/PLA-based).
- Medium budget: Alliage d'aluminium (balances cost and performance) is the best choice.
- High budget: Invest in acier (pour la durabilité) ou beryllium copper alloy (for high precision and cooling speed).
Étape 4: Analyze Part Complexity
- Formes complexes (par ex., internal hollows, fine details): 3D printing materials (no need for traditional machining) ou alliage d'aluminium (easy to mill complex features).
- Simple shapes (par ex., écrans plats, basic frames): Bakélite, résine époxy, ou low-cost steel (fast processing, no extra complexity).
3. Yigu Technology’s Perspective
Chez Yigu Technologie, we believe plastic prototype mold material selection is a “balance of needs” rather than chasing a single “best material.” For most clients—especially startups and small businesses—alliage d'aluminium (6061) is the most versatile choice: it’s fast to machine, rentable, and precise enough for 80% of prototype needs. For high-precision projects (par ex., prototypes de dispositifs médicaux), nous recommandons beryllium copper alloy for its cooling speed and precision retention. For budget-limited, simple tests, 3D printed photosensitive resin molds cut lead time by 50% compared to traditional materials. Nos conseils: Start by listing your top 2 priorities (par ex., “speed + low cost” or “precision + durability”)—this narrows down materials in minutes.
4. FAQ (Frequently Asked Questions)
- Q: Can I use 3D printing materials for plastic prototype molds that need to produce 100 parties?
UN: Cela dépend du matériau. Photosensitive resin molds are only suitable for 10–20 parts (low wear resistance), mais nylon-based 3D printing materials can handle 50–80 parts. Pour 100 parties, nous recommandons alliage d'aluminium (more durable and cost-effective).
- Q: Is steel always better than aluminum alloy for plastic prototype molds?
UN: Non. Steel is better for high-volume, high-wear scenarios, but aluminum alloy is superior for small batches: it’s 3x faster to machine, 1/3 the weight, et 50% moins cher. Choose steel only if you need 500+ parts or extreme durability.
- Q: Why is beryllium copper alloy used for thin-walled plastic parts?
UN: C'est excellente conductivité thermique (2x higher than aluminum) ensures thin-walled parts cool quickly and evenly, reducing warping or deformation. This is critical for thin parts (par ex., 0.5mm thick electronic casings) where shape accuracy is key.
