Quelles sont les étapes clés d'un processus de moulage sous pression de haute qualité?

impression 3D aérospatiale

Dans l'industrie manufacturière moderne, depuis les boîtiers de transmission automobile jusqu'aux boîtiers d'appareils électroniques grand public, le processus de moulage sous pression constitue la pierre angulaire de la production de composants complexes., pièces métalliques en grand volume. Il transforme le métal fondu en composants précis grâce à une pression contrôlée, température, et le timing. Cet article détaille le flux de travail complet du moulage sous pression, de la préparation du moule au post-traitement, met en évidence le contrôle qualité critique […]

In modern manufacturing—from automotive transmission housings to consumer electronics casings—the processus de moulage sous pression stands as a cornerstone for producing complex, pièces métalliques en grand volume. Il transforme le métal fondu en composants précis grâce à une pression contrôlée, température, et le timing. Cet article détaille le flux de travail complet du moulage sous pression, de la préparation du moule au post-traitement, highlights critical quality control points, and solves common process challenges, helping you master the technology for reliable production.

1. What Are the Core Stages of the Die Casting Process?

The die casting process follows a linear, step-by-step workflow with five interconnected stages. Each stage directly impacts the final part quality, and skipping or rushing any step leads to defects. Below is a detailed breakdown with actionable parameters:

1.1 Stage 1: Préparation du moule (Foundation of Precision)

Molds are the “blueprint” of die casting—their design and debugging determine part accuracy.

TaskExigences clésCritical ParametersBut
Conception de moulesParting surface alignment (no offset >0.02mm)- Gating system calculation (main sprue diameter: 8-15mm based on part size)- Auxiliary structures (overflow groove volume: 5-10% of cavity volume; exhaust groove depth: 0.05-0.1mm)Flow rate simulation: Ensure metal liquid fills cavity in 0.05-0.2s- Draft angle: 1-3° for easy demoldingAvoid turbulence, trapped gas, and demolding damage
Mold Material SelectionMold core/cavity: H13 hot-work mold steelQuenching hardness: CRH 48-52; Tempering temperature: 550-600°CWithstand 100,000+ casting cycles; Resist heat fatigue
Mold Installation & DebuggingFix mold on die casting machine platen (parallelism error <0.05mm/m)- Test ejection mechanism (push rod stroke accuracy: ±0,1mm)- Preheat moldPreheat temperature: 150-250°C (alliages d'aluminium); 100-180°C (alliages de zinc)Reduce metal liquid temperature loss; Improve filling capacity

1.2 Stage 2: Préparation du métal en fusion (Guarantee Material Quality)

Poor metal quality ruins even the best mold—this stage focuses on purity and fluidity.

ÉtapeOperation DetailsKey ParametersContrôle de qualité
Raw Material MeltingWeigh metal ingots (par ex., A380 aluminum alloy) by recipe; Melt in crucible furnace– Alliages d'aluminium: 670-720°C- Alliages de zinc: 400-450°C- Magnesium alloys: 650-700°C (inert gas protection)Avoid overheating (causes alloy burning); Prevent underheating (reduces fluidity)
Refining & DégazageAdd refining agent (par ex., hexachloroethane for aluminum); Use argon gas to stirRefining time: 10-15min- Argon flow rate: 5-10 L/minRemove impurities (contenu <0.1%); Reduce gas content (≤0.15mL/100g metal)
Quality MonitoringReal-time temperature tracking (infrared thermometer accuracy: ±2°C)- Sampling for chemical composition (via 光谱分析 spectrometer)Ensure alloy grade compliance (par ex., Si content 7.5-9.5% for A380)Avoid component segregation; Prevent performance degradation

1.3 Stage 3: Injection Filling (Core of Die Casting)

This stage uses high pressure and speed to force metal into the mold—precision here eliminates internal defects.

1.3.1 Two-Stage Injection Process (Norme de l'industrie)

Injection StageButKey ParametersCommon Mistakes to Avoid
Low-Speed FillingFill pressure chamber; Avoid metal splashingVitesse: 0.1-0.5 MS; Pression: 5-15MPaToo fast → Air entrapment; Too slow → Metal solidifies early
High-Speed FillingFill mold cavity quickly; Ensure complex features are formedVitesse: 2-8 MS (alliages d'aluminium); 1-3 MS (alliages de zinc); Pression: 30-70MPaToo slow → Incomplete filling; Too fast → Turbulence (causes porosity)

1.3.2 Boost & Holding

After cavity filling, apply boost pressure and hold to compensate for shrinkage:

  • Boost pressure: 50-100MPa (higher for thick-walled parts);
  • Holding time: 2-10s (depends on part thickness: +1s per 2mm thickness);
  • Résultat: Eliminate internal shrinkage; Ensure part density (≥98%).

1.4 Stage 4: Mold Opening & Retrait de pièces (Avoid Secondary Damage)

Gentle handling prevents part deformation or surface scratches.

OperationMéthodesExigences clés
Mold OpeningDie casting machine pulls moving mold away from fixed moldOpening speed: 50-100 mm/s (slow first, then fast)
Éjection de pièceEjection mechanism pushes part out (with gate cake and runners)Force d'éjection: Uniforme (use multiple push rods for large parts)
Initial CleaningRemove gate cake and runners (manual for small batches; robotic for mass production)Cut surface flatness: Ra ≤6.3μm

1.5 Stage 5: Post-traitement (Finalize Part Quality)

Turns raw castings into market-ready parts—details are in Section 2.

2. How to Control Quality in Each Stage of the Die Casting Process?

Quality control isn’t just a final check—it’s integrated into every stage. Below is a stage-by-stage quality assurance system:

Die Casting StageQuality Control ItemTesting MethodStandards/Acceptance Criteria
Préparation du mouleMold PrecisionMachine de mesure de coordonnées (MMT)Cavity dimension tolerance: IT8-IT10
Molten MetalGas ContentReduced pressure test (RPT)≤0.15mL/100g (alliages d'aluminium)
Injection FillingFilling Process StabilityPressure sensors + Data acquisition systemPressure fluctuation <±5%; Speed fluctuation <±10%
Mold Opening & SuppressionPart Surface QualityInspection visuelle + Magnifying glass (10x)No cracks, cold shuts, or severe burrs
Post-traitement– Précision dimensionnelle- Internal Quality- Propriétés mécaniques– MMT- X-ray flaw detection- Tensile test + Hardness test– Tolérance: ±0,05 mm (key dimensions)- No internal porosity (OIN 17636-1 Niveau 2)- Résistance à la traction: ≥200MPa (A380 aluminum); Dureté: HB 80-100

3. What Are Common Die Casting Process Defects and Their Solutions?

Even with strict control, defects can occur—targeted solutions save time and material.

Defect TypeVisual/Detected CharacteristicsRoot CausePractical Solutions
PorosityTiny air bubbles (visible via X-ray or surface pinholes)Trapped cavity gas- High metal liquid gas content- Fast filling speed1. Enlarge exhaust grooves (depth 0.1-0.15mm); 2. Extend degassing time to 15-20min; 3. Reduce high-speed filling speed by 10-20%
RétrécissementDepressions on part surface or internal voids (X-ray shows dark areas)Insufficient boost pressure- Too fast cooling (local heat loss)- Holding time too short1. Increase boost pressure to 60-80MPa; 2. Add cooling inserts in hot spots; 3. Extend holding time by 2-3s
Cold ShutLinear seams on part surface (unfused metal layers)Low metal liquid temperature- Slow filling speed- Cold mold surface1. Raise metal temperature by 10-20°C; 2. Increase high-speed filling speed by 0.5-1 MS; 3. Check mold preheat (ensure no cold spots)
Mold StrainScratches or material adhesion on part surfaceRough mold cavity (Râ >0.8µm)- Failed release agent- High mold temperature1. Polish mold cavity to Ra ≤0.4μm; 2. Replace release agent (use water-based for aluminum); 3. Lower mold temperature by 20-30°C
CracksFine lines on part (especially at fillets)Small fillet radius (<1mm)- Uneven cooling- Residual stress1. Optimize part design (fillet radius ≥2mm); 2. Balance mold cooling channels (flow rate difference <10%); 3. Add stress relief annealing (120-180°C for 2-4h)

4. Yigu Technology’s Perspective on the Die Casting Process

Chez Yigu Technologie, we view the processus de moulage sous pression as a “systematic precision chain”—each stage is linked, and a weak link ruins the whole part. Our data shows 65% of defects come from ignoring early-stage controls (par ex., mold preheat or metal degassing) rather than post-processing fixes.

We recommend a “preventive control” approach: For automotive aluminum parts, we use AI to monitor injection pressure (real-time adjustment to ±2MPa) and mold temperature (maintain ±5°C stability); For consumer electronics zinc parts, we optimize gating systems to cut porosity rates to <0.5%. By integrating digital monitoring (par ex., IoT sensors for molten metal temperature) and mold life cycle management, we help clients reduce defect rates by 30% and extend mold service life by 20%.

5. FAQ: Common Questions About the Die Casting Process

Q1: What’s the difference between high-pressure die casting (HPDC) and low-pressure die casting (LPDC) in the injection stage?

HPDC utilise la haute pression (30-100MPa) et la vitesse (2-8 MS) for fast filling—ideal for thin-walled, pièces complexes (par ex., phone casings). LPDC utilise une basse pression (0.05-0.2MPa) and slow filling (gravity-assisted)—better for thick-walled, pièces à haute résistance (par ex., engine cylinder heads) as it reduces porosity.

Q2: How long does a typical die casting mold last, and how to extend its life?

A standard H13 steel mold lasts 100,000-200,000 cycles. To extend life: 1. Clean mold cavity after every 500 cycles (remove residue); 2. Avoid overheating (monitor mold temperature in real time); 3. Use mold maintenance oil (prevents rust during downtime); 4. Repair small scratches promptly (via laser cladding).

Q3: Can die casting process be used for high-melting-point metals like steel?

Non. Steel’s melting point (1450-1510°C) exceeds the heat resistance of H13 mold steel (max working temperature ~600°C), causing rapid mold wear. Die casting is mainly for non-ferrous alloys (aluminium, zinc, magnésium) with melting points <800°C. For steel parts, forging or sand casting is more suitable.

Indice
Faire défiler vers le haut