Quels facteurs déterminent les heures de travail de l'usinage CNC?

affûtage CNC

Dans les ateliers d'usinage CNC, qu'il s'agisse de la production de composants de moteurs automobiles ou de pièces de dispositifs médicaux, les heures de travail de l'usinage CNC affectent directement les calendriers de production., coûts de main d'œuvre, et délais de livraison des commandes. Cette mesure clé n’est pas aléatoire; cela dépend d'un mélange de conception de produits, performances de l'équipement, stratégies de processus, et détails opérationnels. Cet article détaille les principaux facteurs d'influence, […]

In CNC machining workshops—whether producing automotive engine components or medical device parts—the working hours of CNC machining directly affect production schedules, coûts de main d'œuvre, et délais de livraison des commandes. Cette mesure clé n’est pas aléatoire; cela dépend d'un mélange de conception de produits, performances de l'équipement, stratégies de processus, et détails opérationnels. Cet article détaille les principaux facteurs d'influence, step-by-step evaluation methods, typical scenario optimizations, and solutions to common misunderstandings, helping you accurately calculate and efficiently reduce machining hours.

1. What Are the Core Influencing Factors of CNC Machining Working Hours?

CNC machining hours are shaped by four interconnected categories, each with specific sub-factors that can extend or shorten cycle times. Below is a detailed breakdown with quantifiable impacts:

1.1 Product Design Features (Account for 30-40% of Total Hours)

Design complexity directly increases tool path difficulty and processing steps.

Design FactorImpact on Working HoursReal-World ExampleOptimization Tip
Shape ComplexityNon-standard surfaces, thin-walled structures, or deep narrow grooves add 20-50% to hours vs. simple blocksAviation supports with complex ribs need 5-axis linkage machining (8-12 hours/part) contre. 2-3 hours for simple bracketsSimplify non-critical contours; Avoid unnecessary deep grooves (>10x diameter)
Précision & Surface RequirementsHigh-precision features (par ex., IT6-level holes) require 2-3x more time for semi-finishing + essaiMirror-polished mold inserts need reduced feed rates (50-100mm/min) contre. 300-500mm/min for Ra 6.3μm surfacesUse multi-step finishing (rough → semi-finish → finish) instead of repeated corrections
Type de matériauDifficult-to-cut materials slow processing by 30-60% contre. easy-to-cut metalsAcier inoxydable (304) requires 80-120m/min cutting speed vs. 300-500m/min for aluminum alloysChoose carbide tools for steel; Utiliser de l'acier rapide (HSS) only for low-volume soft metal parts
Feature Quantity & LayoutDense small holes/threads add 15-30% time due to tool changesA 50mm×50mm aluminum plate with 20 M3 threads needs 40+ minutes (contre. 15 minutes for 5 fils de discussion)Group same-diameter features to reduce tool changes; Use multi-spindle heads for hole arrays

1.2 Machine Tools & Process Conditions (Account for 25-35% of Total Hours)

Equipment capabilities and setup efficiency determine how quickly parts can be machined.

Condition FactorImpact on Working HoursKey ParametersCost-Benefit Note
Equipment PerformanceHigh-rigidity machines cut roughing time by 20-30% contre. older modelsA new vertical machining center (VMC) with 12,000rpm spindle finishes a steel block in 4 heures contre. 6 hours on a 8,000rpm VMCUpgrading spindles (from 8k to 15k rpm) enregistre 15-25% on thin-walled part hours
Tool ConfigurationInsufficient tool magazine capacity adds 10-20% manual tool change timeA 24-tool magazine handles a 5-operation part in 3 heures contre. 4 hours with an 8-tool magazine (besoins 2 manual changes)Prioritize tools for high-frequency operations; Use tool presetters to cut setup time
Clamp SystemQuick-clamp tools reduce downtime by 40-60% contre. manual alignmentA hydraulic vise clamps a part in 2 minutes vs. 10 minutes for manual bolt clampingAdopt zero-point positioning systems for batch production (repeat setup <1 minute)
Refroidissement & LubricationPoor cooling adds 15-25% time due to sticky chips or tool wearDry cutting aluminum causes 2-3x more tool changes (each taking 5-10 minutes) contre. high-pressure mist coolingUse water-soluble coolants for steel; Air-oil mist for aluminum (reduces chip cleanup)

1.3 Procedures & Operation Strategies (Account for 20-25% of Total Hours)

Smart process planning eliminates redundant steps and optimizes tool paths.

Strategy FactorImpact on Working HoursPractical ExampleCommon Mistake
Tool Path PlanningRing cutting is 20-30% faster than row cutting for large surfacesA 200mm×200mm aluminum plate takes 30 minutes with ring cutting vs. 45 minutes with row cuttingAvoid Z-axis straight down (causes tool shock); Use spiral down for deep cavities
Margin AllocationOverly large roughing margins (par ex., >5mm) double finishing timeA steel part with 3mm roughing margin takes 2 hours to finish vs. 1 hour with 1.5mm marginFollow “rough 70-80% de matériel, finish 20-30%” for balance
Exception HandlingUnplanned downtime (par ex., bris d'outil) can take up 10-15% of total hoursA missed emergency retraction space causes a tool strike, ajout 2-3 hours of repair timeReserve 5-10mm retraction space; Use collision detection software

2. How to Evaluate CNC Machining Working Hours Step-by-Step?

Accurate hour evaluation requires combining theoretical calculations with practical measurements. Below is a 3-stage method to avoid guesswork:

2.1 Stage 1: Basic Data Collection (Lays the Foundation)

Gather key information to set calculation parameters.

Data TypeCollection MethodCritical Output
Drawing AnalysisReview tolerance zones, shape/position tolerances, and heat treatment requirementsDivide processing into stages (par ex., pre-heat treatment roughing → post-heat treatment finishing)
Equipment MatchingSelect machine tools by part size (par ex., gantry for >1m parts, VMC for <1m parts)Calculate non-cutting time (par ex., gantry machines move at 10m/min vs. 20m/min for small VMCs)
Tool List PreparationList tool type, diamètre (D), and number of teeth; Calculate cutting speed (Vc)Use formula: Vitesse de broche (S) = (Vc×1000)/(π×D) (par ex., Vc=300m/min for aluminum, D=10mm → S=9549rpm)

2.2 Stage 2: Segmented Timing & Verification (Validates Theoretical Data)

Test and adjust calculations with real machine runs.

  1. Empty Running Test: Lock the spindle and run the program. Record:
  • Axis movement time (par ex., X/Y/Z axis travel time between features);
  • Rapid positioning frequency (each positioning adds 2-5 secondes);
  • Redundant empty strokes (par ex., unnecessary tool returns to home).

Résultat: Eliminate 5-10% of non-cutting time by optimizing tool path order.

  1. First Piece Trial Cutting: Run actual machining and log:
  • Start/end time for each process (roughing, semi-finishing, finition);
  • Tool change intervals (each manual change takes 3-8 minutes, automatic takes 10-30 secondes);
  • Spindle start/stop delays (add 2-3 seconds per cycle).

Résultat: Adjust theoretical parameters (par ex., reduce feed rate if tool vibration occurs).

  1. Abnormal Time Statistics: Track non-value-added time:
  • Tool replacement (5-15 minutes per broken tool);
  • Program debugging (10-20 minutes for complex parts);
  • Measurement waiting (5-10 minutes for CMM checks).

Résultat: These times often account for 10-20% of total hours—plan buffers accordingly.

2.3 Stage 3: Experience Coefficient Modification (Ensures Practicality)

Adjust theoretical hours to account for real-world variables.

Modification FactorAdjustment RatioReason
Safety BufferingAdd 5-15% to theoretical hoursCopes with material hardness fluctuations (par ex., ±10% in aluminum alloy hardness) or tool wear
Batch EffectFirst part: +30-50% (includes tool setting/program verification); Subsequent parts: -10-20%The first part of a batch takes 4 heures contre. 2.5-3 hours for parts 2-100
Environmental CompensationAdd 5-10% in extreme temperatures (>30°C or <10°C)Shop floor heat causes machine thermal deformation, requiring more in-line measurements

3. How to Optimize Working Hours in Typical CNC Machining Scenarios?

Different part types have unique time-consuming pain points—targeted optimizations deliver quick results. Below are two common scenarios:

3.1 Scenario 1: Aluminum Alloy Gearbox Housing

  • Caractéristiques: Thin-walled cavity (2-3mm épaisseur) + 4 mounting surfaces + 12 M8 threaded holes.
  • Key Time-Consuming Points:
  1. Roughing uses a large-diameter face mill (φ50mm) but requires 8-10 passes to remove material;
  2. Finishing needs a long-handled small-diameter tool (φ6mm) to clean cavity roots (slow feed rate: 80-120mm/min);
  3. Threaded holes have aluminum chip clogging, requiring 3-5 blows per hole.
  • Optimization Results:
Optimization MeasureTime SavedNew Total Hours
Switch to honeycomb lightweight cutterhead (φ63mm)20-25% (reduces passes to 5-6)Depuis 5 heures pour 4 heures
Pre-coat tool with anti-stick coating (par ex., TiAlN)15-20% (speeds root cleaning to 150-200mm/min)Depuis 4 heures pour 3.3 heures
Use air blow + vacuum suction during threading10-15% (eliminates re-blowing)Depuis 3.3 heures pour 2.9 heures

3.2 Scenario 2: Stainless Steel Medical Surgical Instrument

  • Caractéristiques: Micron-level tolerance (±0,005mm) + mirror surface (Ra ≤0.2μm) + complex curve contours.
  • Key Time-Consuming Points:
  1. Engraving complex curves at slow speed (50-80mm/min) to avoid surface scratches;
  2. Manual grinding removes tool marks (takes 30-45 minutes par partie);
  3. 3D inspection (MMT) is done 3x per part (total 20-30 minutes).
  • Optimization Results:
Optimization MeasureTime SavedNew Total Hours
Introduce ultrasound-assisted cutting (20-50kHz vibration)30-40% (speeds engraving to 120-150mm/min)Depuis 8 heures pour 6 heures
Use diamond-plated tools (Ra ≤0.1μm) for one-pass finishing40-50% (eliminates manual grinding)Depuis 6 heures pour 4 heures
Combine in-line laser measurement with final CMM check50-60% (reduces inspection to 10-12 minutes)Depuis 4 heures pour 3.7 heures

4. What Are Common Misunderstandings About CNC Machining Working Hours?

Misconceptions lead to inaccurate planning and wasted resources. Below are two key myths and their solutions:

MisunderstandingRealityPractical Countermeasure
“Same drawing = same working hours”Equipment generation differences matter: Old CNC systems (≥10 years) process complex G-code 20-30% slower than new systems (≤5 years)Establish an enterprise-level database: Store hours by material, equipment model, et processus; Update monthly
“Ignore non-cutting time”Non-cutting time (tool changes, tool setting, mesures) comptes pour 25-40% of total hours (not 5-10% as assumed)Use automatic tool changers (ATCs) pour >5-tool parts; Adopt quick-setup fixtures (par ex., zero-point systems)

5. Yigu Technology’s Perspective on Working Hours of CNC Machining

Chez Yigu Technologie, we see working hours of CNC machining as a “mirror of process efficiency”—it reflects not just speed, but also the rationality of design, équipement, and operations. Our data shows 60% of hour waste comes from “hidden inefficiencies” (par ex., poor tool path planning, redundant inspections) rather than equipment speed limits.

We recommend a “digital-driven optimization” approach: For batch parts, we use CAM software to simulate tool paths (coupe 10-15% of empty time) and MES systems to track real-time machine data; Pour pièces complexes, we apply machine learning to historical data (par ex., 10,000+ part records) to auto-recommend optimal parameters (par ex., vitesse d'avance, vitesse de broche). By combining standardized processes (for similar parts) and intelligent monitoring, we help clients reduce average working hours by 20-30% while maintaining quality.

6. FAQ: Common Questions About Working Hours of CNC Machining

Q1: Can I use the same hour calculation formula for different materials?

Non. The core formula (cutting time = material volume / (feed rate × spindle speed × tool efficiency)) must be adjusted for material hardness. Par exemple, acier inoxydable (304) needs a 0.6-0.8 efficiency coefficient vs. 1.0 for aluminum alloy—ignoring this leads to 20-40% underestimation of hours.

Q2: How much time does an automatic tool changer (ATC) save compared to manual tool changes?

An ATC takes 10-30 seconds per tool change vs. 3-8 minutes for manual changes. For a part needing 8 outils, this saves 20-60 minutes per part—critical for batches >50 parties. Pour les petits lots (<10 parties), manual changes may be cheaper (no ATC setup time).

Q3: Why do hours increase for parts with thin walls (<3mm) even if they’re simple in shape?

Thin walls require reduced cutting force (to avoid deformation), which means slower feed rates (50-70% of standard) and smaller depth of cut (0.1-0.3mm vs. 0.5-1mm). Par exemple, a 2mm aluminum wall takes 40 minutes to finish vs. 25 minutes for a 5mm wall—even with the same area.

Indice
Faire défiler vers le haut