What Are the Key Differences Between Zinc Die Casting and Aluminum Die Casting?

Usinage CNC en alliage en zinc

Zinc die casting and aluminum die casting are two of the most widely used metal-forming processes, each dominating distinct niches in manufacturing. While both rely on high pressure to inject molten metal into molds, their differences in material properties, exigences de traitement, and end-product performance make them suited for entirely different applications—from tiny precision electronics parts to large automotive structural components. Mais ce qui les distingue exactement? Quel est l'impact de ces différences sur les coûts, efficacité, et la qualité des parties? And how do you choose the right process for your project? Cet article répond à ces questions avec des comparaisons détaillées et des informations exploitables.

1. Material Basis: Core Properties That Define Performance

The fundamental difference between the two processes lies in their base materials—zinc alloys and aluminum alloys—whose unique traits shape every aspect of die casting. The table below breaks down their key properties:

Propriété matérielleAlliages de zinc (Par exemple, Charges 3, Charges 5)Alliages en aluminium (Par exemple, ADC12, ADC10)
CompositionZinc-based, with added aluminum (3.5–4.3%), cuivre (0.75–1,25%), and magnesium (0.03–0,08%)Aluminum-based, with silicon (9.5–12%), cuivre (1.5–3,5%), et le fer (≤1,3%)
Point de fusionFaible (380–420°C)Haut (680–720°C)
DensitéHaut (6.6–6.8 g/cm³)Faible (2.7 g / cm³)—1/2.5 that of zinc
Résistance à la tractionModéré (280–320 MPA)Plus haut (300–350 MPa for heat-treated grades)
DuctilitéExcellent (élongation: 10–15%)—resists impact without crackingBien (élongation: 2–5% for non-heat-treated; jusqu'à 10% for heat-treated)
Conductivité thermiqueFaible (105–115 W/m·K)Haut (120–150 W/m·K)—better for heat-dissipating parts
Surface Treatment AdaptabilityOutstanding—ideal for electroplating, placage chromé, and high-gloss paintingModerate—challenged by porosity; best for anodizing, revêtement en poudre, or baking paint

2. Paramètres de traitement: Équipement, Efficacité, and Control

Material properties directly influence process requirements—from the type of die casting machine to production speed and defect risks.

UN. Sélection de l'équipement & Installation

Aspect du processusCasting de zinc dieCasting de dépérisation en aluminium
Type de machineUsages hot chamber die casting machines—the injection chamber is permanently immersed in molten zinc. This eliminates the need for separate metal feeding steps.Usages cold chamber die casting machines—molten aluminum is poured into a separate injection chamber (to avoid melting the machine components).
Clamping ForceInférieur (50–200 tonnes)—sufficient for small, thin-walled parts.Plus haut (200–1 200 tonnes)—needed to handle high-pressure filling of large, parties complexes.
Matériau de mouleCan use lower-cost H13 steel—low melting point reduces mold wear.Requires heat-resistant mold materials (Par exemple, H13 steel with nitriding treatment)—high temperatures demand better durability.
Mold Preheating RequirementHaut (150–200 ° C)—prevents cold isolation defects (molten zinc solidifying too quickly on cold mold surfaces).Modéré (200–250 ° C)—balances heat retention and rapid solidification for large parts.

B. Efficacité de production & Coût

Efficiency MetricCasting de zinc dieCasting de dépérisation en aluminium
Temps de cycleRapide (15–30 seconds per part)—low melting point speeds up solidification.Ralentissez (30–60 secondes par pièce)—higher melting point requires longer cooling.
Utilisation des matériauxHaut (90–95%)—minimal scrap from runners and gates (easily recyclable).Modéré (80–85%)—more scrap from porosity defects and larger runners.
Coût par partie (Petites pièces)Inférieur (\(0.1- )0.5 par pièce)—fast cycles and low energy use reduce costs.Plus haut (\(0.3- )1.0 par pièce)—slower cycles and higher energy consumption increase costs.
Consommation d'énergieFaible (30–50 kWh per 100 parties)—no need to reheat metal for each cycle.Haut (80–120 kWh per 100 parties)—requires continuous heating of aluminum to high temperatures.

3. Product Performance: Qualité, Durabilité, and Application Fit

The choice between zinc and aluminum die casting often comes down to the part’s required performance—whether it needs to be lightweight, résistant à l'impact, or visually appealing.

UN. Caractéristiques de partie & Limites

Part TraitCasting de zinc dieCasting de dépérisation en aluminium
Size RangeIdeal for small parts (0.1–500g)-Par ex., boîtiers de connecteur électronique, roues de jouets.Suited for large parts (500g–10kg)-Par ex., blocs de moteur automobile, Cadres de batterie EV.
Épaisseur de paroiExcels at ultra-thin walls (0.5–2 mm)—low melting point ensures uniform filling.Handles thicker walls (2–10 mm)—better for structural parts but struggles with <1mm d'épaisseur.
PrécisionHaut (tolérance: ± 0,05 mm)—excellent for parts requiring tight fits (Par exemple, Regarder les composants).Bien (tolérance: ± 0,1 mm)—sufficient for most structural parts but less precise than zinc.
Defect RisksLow—minimal porosity (thanks to low melting point and slow filling). Risks include cold shuts if mold is underheated.Higher—prone to porosity (from turbulent filling) and shrinkage (from high cooling rates). Requires vacuum casting to reduce defects.
Résistance à l'impactSuperior—can withstand drops and vibrations (Par exemple, phone case hinges, door lock mechanisms).Moderate—may crack under heavy impact; better for static load-bearing parts (Par exemple, supports).

B. Scénarios d'application typiques

The table below maps each process to its ideal industry and part types, based on performance needs:

IndustrieApplications de coulée de moulage en zincAluminum Die Casting Applications
Électronique– Coques de connecteurs USB- Phone button housings- Laptop hinge components- Sensor casings– Chauffer (Haute conductivité thermique)- 5G router frames (léger)- Power adapter enclosures
AutomobileSmall functional parts (door lock mechanisms, wiper linkages)- Garniture intérieure (high-gloss plated parts)- Épingles de connecteur– Blocs moteurs et culasses- Boîtiers de transmission- Body structural parts (lightweight for EVs)- Battery pack frames
Biens de consommationHigh-end hardware (poignées du robinet, boutons de l'armoire)- Toy joints and moving parts- Emballage cosmétique (plated finishes)– Appareils de cuisine (bases de mélangeur, oven door frames)- Mobilier d'extérieur (résistant aux intempéries)- Luggage frames (léger et fort)
Aérospatial & MédicalTiny precision parts (connecteurs pour dispositifs médicaux, aircraft instrument knobs)– Pièces structurelles légères (supports aérospatiaux)- Medical equipment frames (résistant à la corrosion)

4. Selection Strategy: Comment choisir le bon processus

To avoid costly mistakes, follow this 4-step framework to select between zinc and aluminum die casting:

Étape 1: Define Part Requirements

  • Taille & Poids: <500g → Zinc; >500g → Aluminum.
  • Weight Priority: Need lightweight (Par exemple, EV parts) → Aluminum; weight not critical → Zinc.
  • Résistance à l'impact: Haut (Par exemple, handheld devices) → Zinc; faible (Par exemple, static brackets) → Aluminum.

Étape 2: Evaluate Surface & Precision Needs

  • High-Gloss/Plated Finish: Requis (Par exemple, matériel décoratif) → Zinc; not required → Aluminum.
  • Tolérance: ±0.05mm or tighter (Par exemple, électronique) → Zinc; ±0.1mm acceptable → Aluminum.

Étape 3: Considérez le volume de production

  • Low-Medium Volume (<100,000 parties): Zinc (lower mold costs and faster setup).
  • Volume élevé (>100,000 parts): Aluminium (cost per part decreases with scale, offsetting higher initial investment).

Étape 4: Calculer le coût total de possession

  • Zinc: Lower upfront costs (machine + moule) but higher material costs (denser, uses more metal per part).
  • Aluminium: Higher upfront costs but lower material costs (plus léger, uses less metal) and better long-term efficiency for large batches.

5. Yigu Technology’s Perspective on Zinc vs. Casting de dépérisation en aluminium

À la technologie Yigu, we see zinc and aluminum die casting as complementary tools—each solving unique customer needs. For electronics clients needing tiny, pièces précises (Par exemple, Connecteurs USB), our hot chamber zinc die casting lines deliver 99.5% yield rates and cycle times of 18 secondes/partie. For automotive clients requiring large structural components (Par exemple, battery frames), our cold chamber aluminum lines (equipped with vacuum degassing) reduce porosity to <0.5% and meet IATF 16949 normes.

Nous faisons progresser deux innovations clés: 1) Hybrid mold designs for zinc casting (reducing tooling costs by 30% pour les petits lots); 2) AI-driven parameter control for aluminum casting (optimizing filling speed to cut defects by 25%). Our goal is to help clients look beyond “cost alone” and choose the process that aligns with their part’s function, durée de vie, and market positioning—delivering value that extends beyond production.

FAQ

  1. Can I use zinc die casting for heat-dissipating parts (Par exemple, Dissipateurs à la chaleur)?

No—zinc’s low thermal conductivity (105 W / m · k) makes it poor at transferring heat. Aluminium (120–150 W/m·K) is far better for heat-dissipating parts. Par exemple, an aluminum LED heat sink keeps temperatures 20–30°C lower than a zinc equivalent.

  1. Is aluminum die casting more expensive than zinc die casting for small parts?

Yes—for parts <500g, aluminum’s slower cycle time (30–60s vs. 15–30s for zinc) and higher energy use increase per-part costs by 30–50%. Cependant, if the part needs to be lightweight (Par exemple, EV electronics), aluminum’s weight savings may offset the higher cost long-term.

  1. Can zinc die casting parts be heat-treated to improve strength?

No—zinc alloys do not respond well to heat treatment; it can cause brittleness or deformation. Alliages en aluminium (Par exemple, ADC12) can be heat-treated (Par exemple, T6 process) to increase tensile strength by 15–20%, making them better for load-bearing parts.

Indice
Faites défiler en haut