Le moulage sous pression du zinc et le moulage sous pression de l'aluminium sont deux des procédés de formage des métaux les plus utilisés., chacun dominant des niches distinctes dans le secteur manufacturier. Alors que les deux s'appuient sur une haute pression pour injecter du métal en fusion dans les moules, leurs différences dans les propriétés des matériaux, exigences du processus, and end-product performance make them suited for entirely different applications—from tiny precision electronics parts to large automotive structural components. Mais qu'est-ce qui les distingue exactement? How do these differences impact cost, efficacité, et qualité des pièces? And how do you choose the right process for your project? This article answers these questions with detailed comparisons and actionable insights.
1. Material Basis: Core Properties That Define Performance
The fundamental difference between the two processes lies in their base materials—zinc alloys and aluminum alloys—whose unique traits shape every aspect of die casting. The table below breaks down their key properties:
| Propriété matérielle | Alliages de zinc (par ex., les fardeaux 3, les fardeaux 5) | Alliages d'aluminium (par ex., ADC12, ADC10) |
| Composition | Zinc-based, with added aluminum (3.5–4.3%), cuivre (0.75–1.25%), and magnesium (0.03–0.08%) | Aluminum-based, with silicon (9.5–12%), cuivre (1.5–3.5%), and iron (≤1.3%) |
| Point de fusion | Faible (380–420°C) | Haut (680–720°C) |
| Densité | Haut (6.6–6.8 g/cm³) | Faible (2.7 g/cm³)—1/2.5 that of zinc |
| Résistance à la traction | Modéré (280–320 MPa) | Plus haut (300–350 MPa for heat-treated grades) |
| Ductilité | Excellent (élongation: 10–15%)—resists impact without cracking | Bien (élongation: 2–5% for non-heat-treated; jusqu'à 10% for heat-treated) |
| Conductivité thermique | Faible (105–115 W/m·K) | Haut (120–150 W/m·K)—better for heat-dissipating parts |
| Surface Treatment Adaptability | Outstanding—ideal for electroplating, chromage, and high-gloss painting | Moderate—challenged by porosity; best for anodizing, revêtement en poudre, or baking paint |
2. Paramètres du processus: Équipement, Efficacité, and Control
Material properties directly influence process requirements—from the type of die casting machine to production speed and defect risks.
UN. Equipment Selection & Installation
| Process Aspect | Moulage sous pression de zinc | Moulage sous pression en aluminium |
| Type de machine | Utilisations hot chamber die casting machines—the injection chamber is permanently immersed in molten zinc. This eliminates the need for separate metal feeding steps. | Utilisations cold chamber die casting machines—molten aluminum is poured into a separate injection chamber (to avoid melting the machine components). |
| Clamping Force | Inférieur (50–200 tons)—sufficient for small, thin-walled parts. | Plus haut (200–1 200 tonnes)—needed to handle high-pressure filling of large, pièces complexes. |
| Matériau du moule | Can use lower-cost H13 steel—low melting point reduces mold wear. | Requires heat-resistant mold materials (par ex., H13 steel with nitriding treatment)—high temperatures demand better durability. |
| Mold Preheating Requirement | Haut (150–200°C)—prevents cold isolation defects (molten zinc solidifying too quickly on cold mold surfaces). | Modéré (200–250°C)—balances heat retention and rapid solidification for large parts. |
B. Production Efficiency & Coût
| Efficiency Metric | Moulage sous pression de zinc | Moulage sous pression en aluminium |
| Temps de cycle | Rapide (15–30 seconds per part)—low melting point speeds up solidification. | Ralentissez (30–60 secondes par partie)—higher melting point requires longer cooling. |
| Material Utilization | Haut (90–95%)—minimal scrap from runners and gates (easily recyclable). | Modéré (80–85%)—more scrap from porosity defects and larger runners. |
| Per-Part Cost (Petites pièces) | Inférieur (\(0.1–)0.5 par pièce)—fast cycles and low energy use reduce costs. | Plus haut (\(0.3–)1.0 par pièce)—slower cycles and higher energy consumption increase costs. |
| Energy Consumption | Faible (30–50 kWh per 100 parties)—no need to reheat metal for each cycle. | Haut (80–120 kWh per 100 parties)—requires continuous heating of aluminum to high temperatures. |
3. Product Performance: Qualité, Durabilité, and Application Fit
The choice between zinc and aluminum die casting often comes down to the part’s required performance—whether it needs to be lightweight, résistant aux chocs, or visually appealing.
UN. Part Characteristics & Limites
| Part Trait | Moulage sous pression de zinc | Moulage sous pression en aluminium |
| Size Range | Ideal for small parts (0.1–500g)—e.g., electronic connector housings, toy wheels. | Suited for large parts (500g–10kg)—e.g., automotive engine blocks, Cadres de batterie EV. |
| Wall Thickness | Excels at ultra-thin walls (0.5–2mm)—low melting point ensures uniform filling. | Handles thicker walls (2–10mm)—better for structural parts but struggles with <1mm épaisseur. |
| Précision | Haut (tolérance: ±0,05 mm)—excellent for parts requiring tight fits (par ex., composants de montre). | Bien (tolérance: ±0,1mm)—sufficient for most structural parts but less precise than zinc. |
| Defect Risks | Low—minimal porosity (thanks to low melting point and slow filling). Risks include cold shuts if mold is underheated. | Higher—prone to porosity (from turbulent filling) and shrinkage (from high cooling rates). Requires vacuum casting to reduce defects. |
| Résistance aux chocs | Superior—can withstand drops and vibrations (par ex., phone case hinges, door lock mechanisms). | Moderate—may crack under heavy impact; better for static load-bearing parts (par ex., parenthèses). |
B. Typical Application Scenarios
The table below maps each process to its ideal industry and part types, based on performance needs:
| Industrie | Applications de moulage sous pression de zinc | Aluminum Die Casting Applications |
| Électronique | – USB connector shells- Phone button housings- Laptop hinge components- Sensor casings | – Dissipateurs de chaleur (conductivité thermique élevée)- 5G router frames (léger)- Power adapter enclosures |
| Automobile | – Small functional parts (door lock mechanisms, wiper linkages)- Garniture intérieure (high-gloss plated parts)- Broches du connecteur | – Engine blocks and cylinder heads- Transmission housings- Body structural parts (lightweight for EVs)- Battery pack frames |
| Biens de consommation | – High-end hardware (faucet handles, boutons d'armoire)- Toy joints and moving parts- Emballage cosmétique (plated finishes) | – Appareils de cuisine (bases de mixeur, oven door frames)- Mobilier d'extérieur (résistant aux intempéries)- Luggage frames (lightweight and strong) |
| Aérospatial & Médical | – Tiny precision parts (medical device connectors, aircraft instrument knobs) | – Pièces structurelles légères (supports aérospatiaux)- Medical equipment frames (résistant à la corrosion) |
4. Selection Strategy: How to Choose the Right Process
To avoid costly mistakes, follow this 4-step framework to select between zinc and aluminum die casting:
Étape 1: Define Part Requirements
- Taille & Poids: <500g → Zinc; >500g → Aluminum.
- Weight Priority: Need lightweight (par ex., EV parts) → Aluminum; weight not critical → Zinc.
- Résistance aux chocs: Haut (par ex., handheld devices) → Zinc; low (par ex., static brackets) → Aluminum.
Étape 2: Evaluate Surface & Precision Needs
- High-Gloss/Plated Finish: Requis (par ex., matériel décoratif) → Zinc; not required → Aluminum.
- Tolérance: ±0.05mm or tighter (par ex., électronique) → Zinc; ±0.1mm acceptable → Aluminum.
Étape 3: Consider Production Volume
- Low-Medium Volume (<100,000 parties): Zinc (lower mold costs and faster setup).
- Volume élevé (>100,000 parts): Aluminium (cost per part decreases with scale, offsetting higher initial investment).
Étape 4: Calculate Total Cost of Ownership
- Zinc: Lower upfront costs (machine + moule) but higher material costs (denser, uses more metal per part).
- Aluminium: Higher upfront costs but lower material costs (plus léger, uses less metal) and better long-term efficiency for large batches.
5. Yigu Technology’s Perspective on Zinc vs. Moulage sous pression en aluminium
Chez Yigu Technologie, we see zinc and aluminum die casting as complementary tools—each solving unique customer needs. For electronics clients needing tiny, pièces précises (par ex., USB connectors), our hot chamber zinc die casting lines deliver 99.5% yield rates and cycle times of 18 seconds/part. For automotive clients requiring large structural components (par ex., battery frames), our cold chamber aluminum lines (equipped with vacuum degassing) reduce porosity to <0.5% and meet IATF 16949 normes.
We’re advancing two key innovations: 1) Hybrid mold designs for zinc casting (reducing tooling costs by 30% pour les petits lots); 2) AI-driven parameter control for aluminum casting (optimizing filling speed to cut defects by 25%). Our goal is to help clients look beyond “cost alone” and choose the process that aligns with their part’s function, lifespan, and market positioning—delivering value that extends beyond production.
FAQ
- Can I use zinc die casting for heat-dissipating parts (par ex., Dissipateurs de chaleur LED)?
No—zinc’s low thermal conductivity (105 W/m·K) makes it poor at transferring heat. Aluminium (120–150 W/m·K) is far better for heat-dissipating parts. Par exemple, an aluminum LED heat sink keeps temperatures 20–30°C lower than a zinc equivalent.
- Is aluminum die casting more expensive than zinc die casting for small parts?
Yes—for parts <500g, aluminum’s slower cycle time (30–60s vs. 15–30s for zinc) and higher energy use increase per-part costs by 30–50%. Cependant, if the part needs to be lightweight (par ex., EV electronics), aluminum’s weight savings may offset the higher cost long-term.
- Can zinc die casting parts be heat-treated to improve strength?
No—zinc alloys do not respond well to heat treatment; it can cause brittleness or deformation. Alliages d'aluminium (par ex., ADC12) can be heat-treated (par ex., T6 process) to increase tensile strength by 15–20%, making them better for load-bearing parts.
