Casting (coulée traditionnelle) et le moulage sous pression sont deux technologies fondamentales de formage des métaux, chacun avec des principes uniques qui les rendent adaptés à des besoins de fabrication distincts. Tandis que la fonte s'appuie sur la gravité naturelle pour façonner le métal en fusion, offrant ainsi une flexibilité pour des opérations complexes., pièces à faible volume : le moulage sous pression utilise une pression et une vitesse élevées pour produire en série des pièces précises, composants légers. For manufacturers struggling to select the right process, misunderstanding their differences can lead to wasted costs, pièces défectueuses, or missed production goals. This article systematically breaks down their core distinctions, candidatures, and selection logic—supported by data, tableaux, and real-world examples—to help you make informed decisions.
1. Core Definitions: Understanding the Fundamental Differences
Before comparing details, it’s critical to clarify the basic concepts of each process. This section uses a contrast structure to highlight their unique working mechanisms, with key terms emphasized for clarity.
1.1 Casting (Coulée traditionnelle)
Casting, souvent appelé “coulée par gravité” in its narrow sense, is a metal-forming process that relies on natural gravity to fill mold cavities with molten metal. Its core principle is:
- Create a mold (par ex., sand mold, moule en métal) with a cavity matching the part’s shape.
- Heat metal (ferrous or non-ferrous) to its liquid state (par ex., 1500°C for cast iron, 700°C for aluminum).
- Pour the molten metal into the mold—gravity drives the metal to fill the cavity, no external pressure is applied.
- Allow the metal to cool and solidify (minutes to hours, en fonction de la taille de la pièce).
- Break or open the mold, remove the part, and perform post-processing (nettoyage, usinage).
Its defining traits are flexibility and low upfront cost: It works with almost all metals (including high-melting-point ferrous alloys) and can handle parts with complex inner cavities (par ex., engine blocks with integrated oil channels). Cependant, it has limitations in precision and production speed.
1.2 Moulage sous pression
Die casting is a high-pressure, high-speed process designed for mass production of non-ferrous metal parts. Its core principle is:
- Clamp two halves of a precision metal die (typically H13 steel) shut to form a cavity.
- Heat non-ferrous metal (aluminium, zinc, magnésium) to a liquid state (600-700°C for aluminum).
- Inject the molten metal into the die cavity at high pressure (10-175 MPa) et la vitesse (3-50 MS) via a hydraulic punch.
- Hold pressure while the metal solidifies quickly (5-30 secondes) to eliminate porosity and ensure dimensional stability.
- Open the die, eject the part, and trim excess material (coureurs, éclair).
Its key advantages are efficacité et précision: It produces parts with tight tolerances, surfaces lisses, and low per-unit costs—ideal for high-volume applications like smartphone frames or automotive housings. Cependant, it has high upfront mold costs and is limited to low-melting-point non-ferrous metals.
2. Key Performance & Process Comparisons
The differences between cast and die casting extend beyond principles—they impact everything from part quality to production efficiency. Le tableau ci-dessous compare 7 dimensions critiques with specific data and examples:
| Comparison Dimension | Casting (Coulée traditionnelle) | Moulage sous pression |
| Filling Mechanism | Gravity (no external pressure); flow speed = 0.1-0.5 MS | High-pressure injection (10-175 MPa); filling speed = 3-50 MS |
| Compatibilité des matériaux | Tous les métaux: ferrous (cast iron, acier), non-ferrous (aluminium, cuivre), high-melting-point alloys (nickel superalloys) | Limited to non-ferrous metals: aluminium (60% of die cast parts), zinc (25%), magnésium (15%); cannot handle ferrous metals (high melting point damages dies) |
| Part Quality | – Rugosité de la surface: Ra = 6.3-12.5 µm (requires machining)- Tolérance dimensionnelle: ±0.5-1.0 mm (low precision)- Porosity: Moyen (2-5%, due to gravity-driven air entrainment) | – Rugosité de la surface: Ra = 1.6-3.2 µm (near-finish quality)- Tolérance dimensionnelle: ±0.05-0.2 mm (haute précision)- Porosity: Faible (<1% with vacuum die casting; high pressure compresses air gaps) |
| Mold Characteristics | – Moules: Sand molds (disposable, \(500-\)5,000), moules métalliques (réutilisable, \(10,000-\)50,000)- Lifespan: Sand molds = 1 utiliser; metal molds = 10,000-50,000 shots | – Moules: Precision steel dies (with cooling/exhaust systems, \(50,000-\)500,000)- Lifespan: 100,000-1,000,000 shots (aluminum die casts) |
| Production Efficiency | – Temps de cycle: 10-60 minutes par partie (manual pouring)- Automation: Faible (reliant on manual labor for pouring/mold handling)- Batch suitability: Petits lots (1-1,000 parts/year) | – Temps de cycle: 10-60 secondes par partie (fully automated)- Automation: Haut (robotic part removal, continuous metal feeding)- Batch suitability: Production de masse (10,000+ parts/year) |
| Cost Structure | – Low upfront cost (moules); high per-part cost (\(10-\)100+) | – High upfront cost (meurt); low per-part cost (\(0.5-\)10) |
| Typical Part Size/Weight | Grand, heavy parts (1-10,000 kilos): par ex., wind turbine hubs, ship propellers | Small to medium parts (0.01-50 kilos): par ex., cadres de smartphones, automotive door handles |
3. Application Scenarios: Which Process Fits Your Project?
The choice between cast and die casting depends on your part’s material, volume, complexité, et exigences de performance. Below are clear application guidelines avec des exemples concrets.
3.1 When to Choose Cast (Coulée traditionnelle)
Prioritize cast if your project meets any of these criteria:
- High-Melting-Point Ferrous Metals: Parts made of cast iron, acier, or nickel superalloys (par ex., boîtes de vitesses industrielles, boiler components) — die casting cannot handle their high melting points (1500°C+).
- Large/Heavy Parts: Components weighing 100kg+ (par ex., 5000kg ship engine blocks, 1000kg wind turbine hubs) — die casting machines have size/weight limits (max ~50kg per part).
- Faible volume, Complex Parts: Custom parts with small production runs (1-1000 unités/an) — e.g., a specialized mining machine gear case with 3D internal oil channels. Cast’s low mold cost avoids wasting money on expensive die casting tools.
- Parts with Irregular Shapes: Components with uneven wall thicknesses or deep, narrow cavities (par ex., antique reproduction metal art) — gravity filling ensures the metal reaches every detail without pressure-induced defects.
Exemple: A manufacturer producing 50 custom cast iron engine blocks (each 200kg) uses sand mold casting—avoiding $200,000+ die costs and meeting the part’s high-temperature resistance requirements (1200°C).
3.2 When to Choose Die Casting
Opt for die casting if your project aligns with these needs:
- High-Volume Non-Ferrous Parts: Production runs of 10,000+ units/year — e.g., 1 million aluminum smartphone middle frames. Die casting’s low per-part cost (\(1-\)2 per frame) offsets high mold costs.
- Précision, Thin-Walled Components: Parts requiring tight tolerances (±0,1mm) or thin walls (0.5-2mm) — e.g., zinc alloy watch cases or magnesium alloy laptop palm rests. Die casting’s high pressure ensures uniform filling and dimensional stability.
- Lightweight Requirements: Parts for automotive or aerospace (par ex., Supports de batterie EV, aircraft seat frames) — aluminum die casts are 30% lighter than cast iron parts, improving fuel efficiency or payload capacity.
- Minimal Post-Processing: Parts needing smooth surfaces (Ra = 1.6 µm) with no extensive machining — e.g., aluminum heat sinks for LEDs. Die casting eliminates the need for grinding or polishing, réduisant le temps de production en 50%.
Exemple: A consumer electronics brand producing 5 million zinc alloy phone chargers/year uses die casting—achieving 30-second cycle times, 99.5% yield rates, et \(0.8 per-unit costs (contre. \)5 per unit with cast).
4. Transitional Processes: Bridging the Gap Between Cast and Die Casting
For projects with mixed requirements (par ex., medium volume + moderate precision), three transitional processes combine elements of both cast and die casting. The table below explains their value and ideal uses:
| Transitional Process | Core Principle | Avantages clés | Applications idéales |
| Low-Pressure Casting | Uses low gas pressure (0.5-200 kPa) to push molten metal into the mold (slower than die casting, faster than gravity cast) | Balances precision and flexibility; works with aluminum alloys for medium batches (5,000-20,000 unités/an) | Roues automobiles (alliage d'aluminium), motorcycle frames |
| Coulée sous vide | Adds a vacuum step (vacuum degree >90%) to die casting—removes air from the die cavity to reduce porosity | Improves mechanical properties (résistance à la traction +15%) contre. standard die casting; suitable for pressure-bearing parts | Hydraulic valve bodies, EV motor housings |
| Coulée par compression | Combines die casting (haute pression) and forging (compression during solidification)—eliminates internal defects | Achieves forging-like strength (σb = 400-500 MPa) with die casting’s efficiency; works with aluminum/magnesium alloys | Pièces très sollicitées: EV suspension brackets, composants de train d'atterrissage d'avion |
Exemple: A manufacturer producing 10,000 aluminum automotive wheels/year uses low-pressure casting—avoiding $150,000 die costs (contre. standard die casting) while achieving 95% of the precision (tolerance ±0.2mm).
5. Comment choisir: A Step-by-Step Decision Framework
To avoid guesswork, use this 3-step framework to select the right process for your project:
Étape 1: Define Non-Negotiable Requirements
List your project’s must-have criteria:
- Matériel: Is the part made of ferrous metal (cast only) or non-ferrous metal (both options)?
- Volume: Will you produce <1,000 unités (cast), 1,000-10,000 unités (transitional processes), or >10,000 units (moulage sous pression)?
- Précision: Do you need tolerance <±0,2 mm (moulage sous pression) or can you accept ±0.5mm+ (cast)?
- Coût: Can you afford $50,000+ upfront for dies (moulage sous pression), or do you need low initial investment (cast)?
Étape 2: Calculate Total Cost of Ownership (Coût total de possession)
Don’t just focus on per-part cost—include upfront and post-processing costs:
- Cast Example: 1,000 cast iron parts (each 10kg):
Mold cost = \(5,000; per-part cost = \)50; post-processing cost = \(10/partie. Total TCO = \)5,000 + (1,000 × \(60) = \)65,000.
- Die Casting Example: 10,000 pièces en aluminium (each 1kg):
Die cost = \(80,000; per-part cost = \)3; post-processing cost = \(1/partie. Total TCO = \)80,000 + (10,000 × \(4) = \)120,000.
Note: Pour 50,000 unités, die casting’s TCO drops to \(280,000 (contre. \)305,000 for cast), becoming more cost-effective.
Étape 3: Test with Prototypes
Avant la pleine production:
- For cast: Produire 10-20 sand mold prototypes to verify shape and material performance.
- For die casting: Use 3D-printed molds (faible coût) tester 50-100 samples before investing in steel dies.
6. Yigu Technology’s Perspective on Cast and Die Casting
Chez Yigu Technologie, we believe process selection should be “needs-driven, not trend-driven.” Many clients rush to choose die casting for “précision” without realizing their low volume makes cast more cost-effective—or opt for cast for “flexibilité” when die casting could cut per-part costs by 70%.
We recommend a hybrid approach for complex projects: Use cast for critical, low-volume components (par ex., a custom steel gearbox) and die casting for high-volume housings (par ex., aluminum enclosures for the same machine). For medium-volume projects, we advocate low-pressure casting or vacuum die casting—these transitional processes often deliver the best balance of cost and quality.
We also emphasize simulation-first design: Use CAE software (par ex., MAGMA for cast, Moldflow for die casting) to predict defects before mold production. This cuts prototype iterations by 50% and ensures the process you choose meets your performance goals.
7. FAQ: Common Questions About Cast and Die Casting
Q1: Can die casting ever be used for ferrous metals like steel?
Non. Steel’s melting point (1,450-1,510°C) far exceeds the heat resistance of die casting dies (H13 steel deforms at 600-700°C). For ferrous metal parts, cast (sand or metal mold) or forging is the only option. If you need steel’s strength with die casting-like efficiency, consider post-casting machining of gravity-cast steel parts.
Q2: Is cast always cheaper than die casting?
No—only for small batches. Par exemple:
- 500 pièces en aluminium: Cast TCO = \(35,000 (moule \)3,000 + \(64/partie); die casting TCO = \)84,000 (mourir \(80,000 + \)4/partie). Cast is cheaper.
- 50,000 pièces en aluminium: Cast TCO = \(3,203,000; die casting TCO = \)280,000. Die casting is cheaper.
- Break-even point: ~8,000-10,000 units for aluminum parts (varie selon la taille de la pièce).
Q3: How to improve the precision of cast parts (which are naturally less precise)?
Three key steps:
- Use metal molds (contre. sand molds)—improves tolerance from ±1.0mm to ±0.3mm.
- Add post-processing: CNC machining of critical features (par ex., trous, mating surfaces) to achieve ±0.1mm tolerance.
- Use precision pouring tools: Automated ladles with flow meters ensure consistent metal volume, reducing filling-related dimensional variation by 40%.
