What Is Die Casting Processing Cost and Its Key Influencing Factors?

Usinage de résine CNC de résine de formaldéhyde d'urée

Die casting processing cost refers to the total expense of manufacturing die cast parts, covering material procurement, equipment operation, mold use, travail, et post-traitement. It varies widely—for example, aluminum alloy parts processed by a 200-ton machine may cost ~\(0.45/kilos, while complex copper alloy parts with high-precision requirements can exceed \)5/kilos. This huge gap stems from multiple interrelated factors. But what exactly makes up the cost? How do different factors affect the final price? And how can you get an accurate quotation to control costs? This article answers these questions with detailed data and practical guidance.

1. Breakdown of Die Casting Processing Cost: Composants de base

Die casting processing cost is not a single figure—it consists of 5 mutually influencing components. The table below details each part, its proportion, and calculation basis:

Élément de coûtProportion typique (Coût total)Calculation Method & Détails clésBenchmarks de l'industrie (Alliages en aluminium)
Coût matériel50–60%(Raw material price + waste loss rate × raw material price) × part weight- Taux de perte de déchets: 8–15% (depends on process; plus haut pour les pièces complexes)Raw aluminum price: \(2.5- )3/kilos; total material cost per kg part: \(2.7- )3.45
Equipment Operation Cost15–20%(Machine hourly energy consumption × electricity price + machine depreciation) ÷ rendement horaire- Machine depreciation: Calculated over 8–10 years (200-ton machine: ~$80,000 initial cost)200-ton machine: \(0.15- )0.2/kilos; 300-ton machine: \(0.25- )0.35/kilos
Coût de la moisissure5–10%(Coût de fabrication du moule + coût d'entretien) ÷ quantité totale de production- Durée de vie du moule: 50,000–100 000 tirs (moules en alliage d'aluminium)Simple mold: \(5,000- )10,000; complex mold (with sliders): \(20,000- )50,000
Coût de la main d'œuvre8–12%(Number of workers × hourly wage) ÷ rendement horaire- Automation level affects labor needs: Fully automated lines need 1–2 workers/line; semi-automated need 3–5Hourly wage: \(15- )25; labor cost per kg part: \(0.12- )0.3
Coût de post-traitement5–15%Cost of cutting, sable, placage, ou traitement thermique- Complexity drives cost: Simple deburring is cheap; precision CNC machining is expensiveDébarquant: \(0.05- )0.1/kilos; sable + placage: \(0.5- )1.2/kilos

2. Key Pricing Models for Die Casting Processing

Les fabricants utilisent 2 main pricing models to calculate costs—each suitable for different scenarios. The table below compares their pros, inconvénients, et les cas d'utilisation idéaux:

Pricing ModelCalculation FormulaAvantagesDésavantageIdéal pour
Equipment Tonnage-Based PricingCost per kg = Base rate (per tonnage) + material premium (if using non-aluminum alloys)- Exemple: 200-ton machine: \(0.45/kilos; 300-ton machine: \)0.65/kilosSimple, fast calculation; easy for customers to understandIgnores part complexity; may overcharge for simple partsGrand lot, parties simples (Par exemple, supports automobiles, matériel de base)
Itemized Costing (Precision Quotation)Total cost = Material cost + coût de l'équipement + Coût de la moisissure + coût de la main d'oeuvre + post-processing cost + profit margin (10–15%)Accurate; reflects part-specific requirements; fair for both partiesPrend du temps; requires detailed part information (dessins, matériels)Complexe, pièces de haute précision (Par exemple, composants de dispositifs médicaux, pièces aérospatiales)

3. Core Factors Influencing Die Casting Processing Cost

Multiple factors cause cost fluctuations—some can increase expenses by 30% ou plus. Below is a detailed analysis of 6 key factors with quantitative impacts:

UN. Type de matériau (Biggest Cost Driver)

Different metals have vastly different prices and process requirements:

  • Alliages en aluminium: Le moins cher (\(2.7- )3.45/kg material cost); facile à traiter; ideal for most general parts.
  • Alliages de zinc: Slightly higher cost (\(3.5- )4.2/kg material cost); good for small, pièces précises (Par exemple, boîtiers électroniques).
  • Alliages de cuivre: Coût élevé (\(8- )10/kg material cost); requires higher temperature and pressure; used for heat-conducting parts (Par exemple, chauffer).
  • Alliages de magnésium: Premium cost (\(6- )7.5/kg material cost); lightweight but requires strict safety measures (flammable); used in aerospace/automotive lightweight parts.

B. Complexité en partie & Conception

Complex designs increase mold, travail, et les coûts de post-traitement:

  • Complexité structurelle: Parts with sliders, hydraulic core pulling, or insert installation add 20–50% to mold cost. Par exemple, a part with 2 sliders costs 30% more than a simple part of the same weight.
  • Épaisseur de paroi: Épaisseur de paroi inégale (rapport >3:1) reduces production efficiency by 15–25% (more rework needed), increasing labor and equipment costs.
  • Exigences de précision: Tolerances tighter than ±0.1mm require precision machining, ajout \(0.3- )0.8/kg to post-processing cost.

C. Volume de commande (Critical for Cost Reduction)

Larger batches lower unit costs due to economies of scale:

  • Petits lots (<10,000 parties): High unit cost—mold cost is spread over fewer parts. Par exemple, un \(10,000 mold for 5,000 parts adds \)2/part to the cost.
  • Medium Batches (10,000–50,000 parts): Balanced cost—mold and equipment costs are spread reasonably; manufacturers may offer 5–10% discounts.
  • Gros lots (>50,000 parties): Lowest unit cost—automation is feasible, labor costs drop, and material suppliers offer volume discounts (5–15% off raw material prices).

D. Mold Condition & Entretien

Poor mold condition increases rework and scrap rates, faire augmenter les coûts:

  • New Molds: Low scrap rate (<2%); no extra maintenance cost in the first 10,000 coups de feu.
  • Worn Molds: Scrap rate rises to 5–8%; require monthly maintenance (\(200- )500/moule) to fix gaps or surface damage.
  • Customer-Supplied Molds: If the mold needs debugging (Par exemple, adjusting core position) or overhaul (Par exemple, replacing worn components), additional costs of \(500- )2,000 may apply.

E. Exigences de post-traitement

Additional operations significantly increase costs—each step adds 5–15% to the total:

Étape de post-traitementImpact sur les coûts (Per kg Part)But
Débarquant (manuel)\(0.05- )0.1Retirer les arêtes vives
Usinage CNC\(0.8- )2Achieve high precision (± 0,05 mm)
Sable\(0.2- )0.4Améliorer la rugosité de la surface (Rampe <1.6µm)
Placage (chrome/nickel)\(0.8- )1.5Enhance corrosion resistance and aesthetics
Traitement thermique (T6)\(0.3- )0.6Increase tensile strength (from 200MPa to 300MPa+)

F. Regional Cost Differences

Travail, électricité, and rent vary by region, affecting overall costs:

  • North America/Europe: High costs—electricity (\(0.15- )0.25/kWh), travail (\(15- )25/heure); total cost per kg part: \(4- )6.
  • Asie (Chine, Vietnam): Lower costs—electricity (\(0.05- )0.1/kWh), travail (\(5- )10/heure); total cost per kg part: \(2- )4.
  • South America: Medium costs—electricity (\(0.1- )0.15/kWh), travail (\(8- )12/heure); total cost per kg part: \(3- )5.

4. Guide pratique: How to Get an Accurate Quotation & Control Costs

To avoid overpaying and ensure cost transparency, suivre ces 4 mesures:

Étape 1: Prepare Detailed Information for Manufacturers

Provide 3 key pieces of data to get a precise quote:

  • 2D/3D Drawings: Include dimensions, tolérances (Par exemple, ± 0,1 mm), and structural details (Par exemple, number of sliders).
  • Spécifications de matériau: Clarify alloy type (Par exemple, A380 en aluminium, Charges 5 zinc) and quality standards (Par exemple, ASTM, OIN).
  • Order Details: Annual purchase volume, delivery schedule, and post-processing requirements (Par exemple, “need sandblasting + T6 heat treatment”).

Étape 2: Compare Quotations Smartly

Don’t just choose the cheapest—evaluate 5 facteurs:

  1. Ventilation des coûts: Ask for a detailed breakdown (matériel, équipement, moule, etc.) to check for hidden fees.
  2. Capacités d'équipement: Ensure the manufacturer has machines matching your part’s needs (Par exemple, 300-ton machine for large parts).
  3. Certifications de qualité: Recherchez ISO 9001 (qualité) or IATF 16949 (automobile) to avoid rework costs from poor quality.
  4. Délai de mise en œuvre: Longer lead times may mean higher inventory costs; choose manufacturers with 2–4 week lead times for standard parts.
  5. Service après-vente: Check if they offer mold maintenance or defect replacement—this reduces long-term costs.

Étape 3: Negotiate for Cost Savings

Utilisez-les 3 strategies to lower costs without compromising quality:

  • Volume Commitments: Promise annual volumes >50,000 parts to get 10–15% discounts on unit costs.
  • Long-Term Partnerships: Sign 1–2 year contracts for stable pricing (avoids raw material price fluctuations).
  • Optimisation de conception: Work with the manufacturer to simplify designs (Par exemple, reduce sliders, balance wall thickness) to cut mold and process costs by 15–20%.

Étape 4: Monitor Costs During Production

Track 3 key metrics to avoid cost overruns:

  • Débit de ferraille: Keep it <3% (moyenne de l'industrie); higher rates mean wasted materials and labor.
  • Mold Maintenance Frequency: Schedule maintenance every 10,000 shots to prevent unexpected downtime (frais \(500- )2,000/heure).
  • Déchets: Optimize part nesting (arrange multiple parts in one mold) to reduce waste loss rate from 15% to 8–10%.

5. Yigu Technology’s Perspective on Die Casting Processing Cost

À la technologie Yigu, we believe cost control in die casting is about balancing precision, qualité, and efficiency—not just cutting expenses. Pour les clients automobiles, our itemized costing model (avec 100% transparent breakdowns) and design optimization services reduced their total costs by 18%. Pour les fabricants de dispositifs médicaux, we use shared molds (pour les petits lots) to lower mold cost per part by 40%, while maintaining ISO 13485 normes de qualité.

We’re advancing two cost-saving innovations: 1) AI-driven process optimization (reduces scrap rate to <2% and energy consumption by 12%); 2) Modular mold design (allows mold components to be reused across parts, cutting mold cost by 25%). Our goal is to help clients get high-quality die cast parts at competitive prices—turning cost control into a competitive advantage.

FAQ

  1. Why does the same part have different quotes from different manufacturers?

Quotes vary due to 4 facteurs: 1) Equipment efficiency (newer machines have lower operation costs); 2) Regional labor/electricity prices; 3) Quality standards (ISO-certified manufacturers charge more for better quality); 4) Mold reuse (manufacturers with existing similar molds offer lower quotes). Always ask for a cost breakdown to compare apples to apples.

  1. How much does mold cost affect the unit price of small-batch parts?

Pour les petits lots (<10,000 parties), mold cost is a major factor. Par exemple, un \(10,000 mold for 5,000 parts adds \)2/part to the unit cost—this can double the total price. To reduce this impact, ask about shared molds (split mold cost with other clients) or short-life molds (moins cher, pour <5,000 coups de feu).

  1. Can post-processing be skipped to save costs?

It depends on the part’s use: 1) Non-visible, pièces non porteuses (Par exemple, supports internes) can skip sandblasting/plating (sauvegarde \(0.5- )1.2/kilos); 2) Pièces visibles (Par exemple, boîtiers d'électronique grand public) need surface treatment to avoid aesthetics issues; 3) Pièces de chargement (Par exemple, pièces structurelles automobiles) require heat treatment (cannot skip—this ensures strength and safety). Skipping necessary post-processing leads to higher defect rates and long-term costs.

Indice
Faites défiler en haut