Quels sont les outils courants utilisés dans l'usinage CNC, Comment les choisir?

tournage de broyeur CNC

En usinage CNC, que ce soit pour des composants aérospatiaux, dispositifs médicaux, ou des pièces automobiles : les outils courants utilisés dans l'usinage CNC déterminent directement l'efficacité de l'usinage., qualité de surface, et les coûts de production. Ces outils ne sont pas une collection aléatoire; ils sont classés par fonction (fraisage, forage, tournant) et adapté aux propriétés des matériaux (aluminium souple vs. acier dur) et les besoins en matière de processus (ébauche vs. finition). […]

En usinage CNC, que ce soit pour des composants aérospatiaux, dispositifs médicaux, or automotive parts—the common tools used in CNC machining directly determine machining efficiency, qualité de surface, et les coûts de production. Ces outils ne sont pas une collection aléatoire; ils sont classés par fonction (fraisage, forage, tournant) et adapté aux propriétés des matériaux (aluminium souple vs. acier dur) et les besoins en matière de processus (ébauche vs. finition). This article breaks down the core tool categories, their key features, scénarios d'application, and practical selection strategies, helping you avoid mismatches and optimize your machining workflow.

1. What Are the Core Categories of Common CNC Machining Tools?

CNC machining tools are mainly divided into four functional categories, each covering multiple specialized types. Below is a clear breakdown to help you quickly identify the right tool for your task:

Tool CategoryKey FunctionsTypical Tool TypesSuitable Machining Processes
Outils de fraisageRemove material from workpiece surfaces; Shape flat, courbé, or grooved featuresFace mills, round nose mills, flat bottom mills, ball end mills, chamfer millsFraisage (vertical/horizontal machining centers); Contour shaping; Cavity machining
Drilling ToolsCreate holes of different diameters; Finish hole accuracy and surface qualityStandard twist drills, forets à centrer, U-drills, alésoirs, robinetsForage; Hole finishing; Thread machining
Tournant & Outils ennuyeuxMachine cylindrical, conique, or hole features on lathes; Achieve high-precision hole diametersTurning tools, fine boring tools, rough boring toolsTournant (Tours CNC); Ennuyeux (for existing holes); Grooving on cylindrical parts
Specialized ToolsHandle unique features or materials; Reduce tool changes and improve efficiencyThread cutters, slot milling cutters, outils de formage, engraving toolsThread machining; Keyway/T-groove cutting; Custom feature shaping; Fine engraving

2. What Are the Key Features and Applications of Milling Tools?

Milling tools are the most versatile in CNC machining, used for everything from large-area roughing to precision contouring. Below is a detailed guide to the most common types:

2.1 Common Milling Tools: Caractéristiques & Use Cases

Milling Tool TypeCore FunctionKey CharacteristicsIdeal Application ScenariosCompatibilité des matériaux
Face MillLarge-area roughing/finishing of flat surfacesMulti-flute design (4-12 flutes)- Large diameter (φ20-100mm)- High material removal rateMachining automotive engine blocks (flat top surfaces)- Finishing mold bases (Ra 1.6-3.2μm)Tous les métaux (aluminium, acier, titane); Best for large flat parts
Round Nose MillBalanced roughing + corner clearing; Complex contour machiningRounded cutting edge (radius 0.5-10mm)- Avoids sharp corner damageMachining shallow cavities with rounded edges (par ex., boîtiers d'appareils électroniques)- Medium-area material removal (50-100cm² parts)Alliages d'aluminium (soft materials); Acier (with coated blades)
Flat Bottom MillStraight wall + straight bottom machining; Sharp corner formingFlat cutting edge (no radius)- Subdivided into: • Aluminum mills (focus on side edge sharpness) • Tungsten steel mills (for hard materials)Machining straight-wall grooves (par ex., keyways in shafts)- Finishing rectangular cavities (par ex., sensor mounting slots)Aluminum mills: Al/Mg alloys; Tungsten steel mills: 45# acier, acier inoxydable
Ball End MillCurved surface machining; Complex contour trimmingHemispherical cutting edge- Improves surface finish via step adjustment (stepover 10-20% of tool diameter)Machining aerospace turbine blade curves- Engraving 3D patterns on mold insertsTous les métaux; Best for curved surfaces (par ex., optical lens molds)
Chamfer MillChamfer cutting; Ébavurage; Countersink machiningFixed angles (30°, 45°, 60°)- Single/multi-flute optionsDeburring hole edges (prevents part damage during assembly)- Machining countersinks for screws (par ex., quincaillerie pour meubles)Tous les métaux; Universal for post-processing

3. How to Select Drilling Tools for Different Hole Requirements?

Drilling tools are critical for hole creation, but choosing the wrong type leads to low accuracy or broken tools. Below is a selection guide based on hole depth, précision, et du matériel:

3.1 Drilling Tool Comparison: Precision vs. Efficacité

Drilling Tool TypePrimary UseNiveau de précisionEfficacitéKey Limitations
Standard Twist DrillUniversal pre-drillingFaible (diameter tolerance: ±0,1mm)Haut (fast drilling speed: 100-300mm/min)Cannot achieve high precision; Needs reaming for tight tolerances
Center DrillHigh-precision hole positioningHaut (précision de positionnement: ±0,02 mm)Moyen (slow feed rate: 20-50mm/min)Only for positioning; Cannot drill deep holes (>5mm)
U-Drill (Violent Drill)Deep hole machining (depth-to-diameter ratio >5:1)Moyen (tolérance: ±0,05 mm)Very high (one-pass drilling; Center outlet cooling)Not suitable for shallow holes (<3x diameter); Requires high-pressure coolant
ReamerHole finishing; Correcting verticalityVery high (tolérance: ±0,01mm; Râ <0.8µm)Faible (slow feed rate: 10-30mm/min)Cannot change hole position; Requires pre-drilled holes (90-95% of final diameter)
TapInternal thread machiningMedium-high (thread tolerance: 6H/7H)MoyenCutting taps: Pour les matériaux souples (aluminium); Produce chips- Forming taps: Pour matériaux durs (acier); No chips (better for blind holes)

4. What Are the Must-Know Turning & Boring Tools for Lathe Machining?

Turning and boring tools are essential for cylindrical parts and hole refinement on CNC lathes. Below is a breakdown of their key roles:

Tool TypeFunctionKey ParametersExemples d'application
Turning ToolOuter circle, inner circle, and grooving machiningCutting edge angle: 30-90°- Insert material: Carbure (pour l'acier); PCD (pour l'aluminium)Turning automotive drive shafts (outer circle diameter φ50-100mm)- Grooving for O-rings (groove width 2-5mm)
Fine Boring ToolPrecision hole finishingAdjustable edge position (±0,001 mm)- Finition superficielle: Râ <0.4µmFinishing hydraulic cylinder holes (tolerance H7)- Machining bearing seats (rondeur <0.005mm)
Rough Boring ToolRough boring or reamingLarge cutting volume (depth of cut 1-3mm)- Tolérance: ±0,1mmPre-processing engine cylinder bores (before fine boring)- Enlarging existing holes (from φ20mm to φ30mm)

5. How to Choose the Right CNC Machining Tool: Un guide étape par étape

Choosing tools randomly leads to 30-50% des coûts plus élevés (due to rework or tool breakage). Follow this 4-step process for optimal selection:

Étape 1: Define Machining Requirements

Clarify core goals to narrow down tool types:

  • If roughing: Prioritize tools with high material removal rates (par ex., moulins à visage, U-drills).
  • If finishing: Choose tools with sharp edges and high precision (par ex., ball end mills, alésoirs).
  • If hole machining: Match tool to hole depth (U-drill for deep holes) et précision (reamer for tight tolerances).

Étape 2: Match Tool to Material Properties

Soft and hard materials require different tool materials:

Workpiece MaterialRecommended Tool MaterialKey Reason
Aluminum/Magnesium Alloys (Doux)PCD (polycrystalline diamond) or high-speed steel (HSS)PCD has ultra-sharp edges; Avoids material adhesion
Steel/Stainless Steel (Dur)Tungsten carbide (with TiAlN coating) or CBN (cubic boron nitride)Coated carbide resists wear; CBN handles high temperatures
Alliages de titane (Difficult-to-Cut)Ultra-fine grain carbide (with TaN coating)Haute dureté (HRC70) et résistance à la chaleur

Étape 3: Consider Machine Tool Performance

Ensure tools match your CNC machine’s capabilities:

  • Vitesse de broche: High-speed spindles (>15,000 tr/min) work best with PCD tools (pour l'aluminium); Low-speed spindles need carbide tools (pour l'acier).
  • Coolant system: U-drills require high-pressure coolant (30-50MPa); Micro lubrication suits ball end mills (reduces chip adhesion).

Étape 4: Evaluate Cost-Efficiency

Balance tool life and price:

  • Production en grand volume: Invest in durable tools (par ex., coated carbide) to reduce tool changes (enregistre 20-30% in labor time).
  • Faible volume, pièces personnalisées: Use universal tools (par ex., standard twist drills) instead of expensive custom tools (cuts tool costs by 40-60%).

6. Yigu Technology’s Perspective on Common Tools Used in CNC Machining

Chez Yigu Technologie, we see common tools used in CNC machining as the “silent efficiency drivers”—the right tool choice can cut production time by 20-40% while improving quality. Our data shows 70% of machining defects (par ex., mauvais état de surface, hole deviation) come from tool-material mismatches, not machine errors.

We recommend a “scenario-driven” tool selection approach: For auto part manufacturers, we pair tungsten steel flat bottom mills with 45# acier (reducing tool wear by 50%); For medical device clients, we use PCD ball end mills for titanium alloys (atteindre Ra <0.2μm for implants). We also help clients build tool life trackers (via IoT sensors) to replace tools before failure—avoiding costly rework. Finalement, tool selection isn’t just about “buying the best”—it’s about “matching the right tool to the right task.”

7. FAQ: Common Questions About CNC Machining Tools

Q1: Can I use a ball end mill for flat surface machining instead of a face mill?

Technically yes, but it’s inefficient. Ball end mills have a smaller cutting area (only the tip contacts the surface), so machining a 100mm×100mm flat surface takes 3-5x longer than a face mill. Face mills also produce smoother surfaces (Ra 1.6μm vs. Ra 3.2μm for ball end mills) and last longer—they’re the better choice for flat surfaces.

Q2: Why do forming taps work better for hard materials (par ex., acier inoxydable) than cutting taps?

Forming taps use cold extrusion to shape threads (no chip removal), while cutting taps remove material to create threads. Pour matériaux durs, cutting taps are prone to chip clogging (causing broken taps) and edge wear (reducing thread quality). Forming taps avoid these issues—they produce stronger threads (20-30% résistance à la traction plus élevée) and last 2-3x longer than cutting taps for stainless steel.

Q3: How often should I replace common CNC tools (par ex., fraises en bout de carbure)?

It depends on tool type and material:

  • Carbide face mills (pour l'acier): Replace after 80-120 minutes of cutting (or when surface roughness worsens to Ra >3.2µm).
  • PCD ball end mills (pour l'aluminium): Last 300-500 minutes (replace when edge chipping is visible).
  • Standard twist drills: Replace after 50-80 trous (or if drilling force increases suddenly, indicating dull edges).

Always track tool life with a log—don’t wait for tool breakage (which can damage workpieces).

Indice
Faire défiler vers le haut