Quel est le processus d'usinage CNC pour un modèle prototype de réfrigérateur? Un guide étape par étape

Usinage CNC automobile

Le développement d'un prototype de réfrigérateur nécessite un processus d'usinage CNC précis pour valider la faisabilité de la conception., tester l'ajustement des composants, et évaluer les performances esthétiques. Contrairement aux prototypes de petits appareils électroménagers, les réfrigérateurs ont des structures complexes (par ex., boîte, corps de porte, supports pour système de réfrigération) qui exigent un contrôle strict de la précision dimensionnelle et de la qualité de la surface. Ce guide détaille le flux de travail complet, depuis les préliminaires […]

Le développement d'un prototype de réfrigérateur nécessite un processus d'usinage CNC précis pour valider la faisabilité de la conception., tester l'ajustement des composants, et évaluer les performances esthétiques. Contrairement aux prototypes de petits appareils électroménagers, les réfrigérateurs ont des structures complexes (par ex., boîte, corps de porte, supports pour système de réfrigération) qui exigent un contrôle strict de la précision dimensionnelle et de la qualité de la surface. This guide breaks down the full workflow—from preliminary preparation to post-processing—with key parameters, sélections de matériaux, and practical tips to ensure prototype success.

1. Préparation préliminaire: Lay the Foundation for Machining

The success of CNC machining starts with thorough preparation, including 3D modeling, sélection des matériaux, and equipment/tool readiness. This stage ensures the subsequent process is efficient and error-free.

(1) 3Modélisation D: Define Prototype Details with Precision

Use professional CAD software (par ex., SolidWorks, UG) to create a detailed 3D model that covers all critical structures of the refrigerator. The model must balance design requirements, logique d'assemblage, and machining feasibility.

Structure CategoryKey Design DetailsPrecision RequirementsBut
Main Body (Box)Inner cavity size (par ex., 500mm×600mm×1800mm), partition slots, refrigeration system mounting holesCavity dimension error ±0.2mm; hole position tolerance ±0.1mmEnsure fit for insulation layers and refrigeration components
Door BodyFrame size, observation window cutout (le cas échéant), hinge mounting slotsFrame parallelism error ≤0.1mm; cutout edge smoothness Ra ≤1.6μmGuarantee tight sealing when closed; match hinge assembly
Functional ComponentsHandle shape (ergonomic curve), control panel slot, drawer slide railsHandle surface roughness Ra ≤0.8μm; slot depth tolerance ±0.05mmImprove user experience; ensure smooth operation of moving parts

Model Optimization Tips:

  • Layered Design: Split complex structures (par ex., door body with inner liner) into separate machinable components to avoid tool interference. Par exemple, machine the door frame and inner liner separately, then assemble them.
  • Process Marking: Label key machining features (par ex., “no tool marks on visible surfaces”) and reference datums (par ex., box bottom as the origin) to guide CNC programming.
  • Interference Check: Use software to simulate component assembly (par ex., door closing, drawer sliding) and eliminate overlapping or collision risks (par ex., ensure 2–3mm clearance between door and box).

(2) Sélection des matériaux: Match Performance to Component Roles

Different parts of the refrigerator prototype require materials with specific properties (par ex., force, transparence, brillant). Below is a detailed comparison of suitable options:

Type de matériauApplicable PartsPropriétés clésMachinability Advantages
Plastique ABSBox body, door frame, handleBonne résistance aux chocs (Résistance aux chocs Izod 20 kj /), facile à colorier, faible coûtLow tool wear; can be machined at high speed (10,000–15,000 rpm)
PC PlasticObservation window, control panel coverHigh transparency (light transmittance ≥88%), résistant aux chocs (10x plus résistant que le verre)Precision cutting achievable; minimal chipping on edges
Acrylique (PMMA)Exterior decorative strips, logo platesExcellent gloss (60° gloss value ≥90%), vivid color expressionSmooth surface after polishing; suitable for aesthetic-focused parts
Alliage d'aluminium (6061)Drawer slide rails, refrigeration mountsHaute rigidité (résistance à la traction 276 MPa), bonne résistance à la corrosionFast machining speed; suitable for load-bearing structural parts

Material Blank Preparation:

  • Cut blanks according to the maximum size of each part, reserving 5–10mm machining allowance on all sides. Par exemple:
  • A door frame with a final size of 600mm×800mm×50mm requires a 610mm×810mm×60mm ABS blank.
  • An aluminum alloy slide rail (100mm×20mm×5mm) needs a 110mm×30mm×15mm blank to accommodate roughing and finishing.

(3) Équipement & Préparation des outils: Ensure Machining Accuracy

Select CNC equipment and tools based on material properties and part complexity to avoid defects like tool marks or dimensional deviations.

Equipment/Tool TypeSelection CriteriaRecommended Specifications
CNC Machining CenterHigh-precision 3-axis or 5-axis models (for curved surfaces like door handles)Positioning accuracy ±0.005mm; spindle speed range 8,000–24,000 rpm
Milling CuttersSolid carbide tools for plastic; acier rapide (HSS) tools for aluminum alloy– Plastique: Φ6–Φ12mm flat-bottom mills (for roughing), Φ3–Φ6mm ball-head mills (pour finir)- Aluminium: Φ8–Φ16mm end mills (for roughing), Φ4–Φ8mm face mills (pour surfaces planes)
Forets & TapsTwist drills for holes; machine taps for threaded mounting holes– Forets: Φ2–Φ10mm (match hole size requirements)- Taps: M3–M8 (for hinge and handle mounting)
FixturesVacuum suction cups (for flat plastic parts); precision vises (for aluminum components)Vacuum pressure ≥0.8 MPa; vise clamping force ≥5 kN to prevent workpiece displacement

2. Programmation & Installation: Translate Design to Machinable Code

This stage converts the 3D model into actionable CNC instructions and prepares the machine for operation—critical for ensuring machining accuracy.

(1) Programmation FAO: Generate Machining Code

Use CAM software (par ex., Mastercam, PowerMill) to convert the 3D model into G-code, and optimize parameters based on material and part structure.

Machining StageKey ParametersOptimization Tips
RoughingCutting speed: 10,000–12,000 rpm (ABS); 12,000–15,000 rpm (aluminium)- Vitesse d'alimentation: 1,000–1,500 mm/min (ABS); 800–1,200 mm/min (aluminium)- Cutting depth: 2–5mm (ABS); 1-3mm (aluminium)Utiliser “layered cuttingto remove 90% of excess material; leave 0.3–0.5mm allowance for finishing
FinitionCutting speed: 15,000–18,000 rpm (ABS); 18,000–22,000 rpm (aluminium)- Vitesse d'alimentation: 500–800 mm/min (ABS); 400–600 mm/min (aluminium)- Cutting depth: 0.1-0,3mmFor curved surfaces (par ex., handle), utiliser “spiral cuttingwith a step distance of 0.05mm to eliminate tool marks
Hole MachiningDrilling speed: 8,000–10,000 rpm- Tapping speed: 500–800 rpm (M3–M5 taps)Utiliser “pecking drilling” (drill 3mm, retract 1mm) to clear chips; apply cutting fluid for aluminum to prevent thread stripping

(2) Configuration de la machine: Install Tools & Secure Workpieces

Proper setup ensures the machine, outils, and workpieces are aligned to the same coordinate system—avoiding dimensional errors.

Tool Installation & Calibration:

  1. Mount tools into the tool magazine and use a tool setter to measure tool length and radius. Record data in the CNC system to compensate for tool wear.
  2. Par exemple: A Φ6mm ball-head mill for ABS finishing needs its length calibrated to ±0.001mm to ensure consistent cutting depth.

Workpiece Clamping:

  1. Clean the machining table to remove debris, then fix the blank using fixtures:
  • For ABS box blanks: Use vacuum suction cups to cover 80% of the blank’s bottom surface (prevents warping during machining).
  • For aluminum slide rails: Secure with a precision vise, ensuring the blank is parallel to the table (error ≤0.01mm).
  1. Set the workpiece origin (par ex., use a touch probe to detect the blank’s edge) and input coordinates into the CNC system.

3. Exécution d'usinage CNC: From Blank to Prototype Structure

This stage divides machining into roughing and finishing to balance efficiency and precision—critical for complex refrigerator structures.

(1) Roughing: Shape the Prototype Foundation

Roughing removes most excess material to bring the blank close to the final shape, prioritizing speed while avoiding tool damage.

Component TypeRoughing FocusKey Operations & Parameters
Refrigerator BoxMachine outer frame and inner cavity; mill partition slotsUse Φ12mm flat-bottom mill (ABS); vitesse de coupe 11,000 tr/min, vitesse d'avance 1,200 mm/min; cavity depth cut in 3 passes (5mm each)
Door BodyMill door frame and observation window cutout; machine hinge mounting slotsUse Φ10mm end mill (ABS); vitesse de coupe 10,000 tr/min, vitesse d'avance 1,000 mm/min; cutout edges left with 0.3mm finishing allowance
Aluminum Slide RailsMachine rail profile and mounting holesUse Φ8mm end mill (aluminium); vitesse de coupe 14,000 tr/min, vitesse d'avance 1,000 mm/min; holes pre-drilled with Φ3mm twist drill

Post-Roughing Inspection:

  • Use a digital caliper to check key dimensions (par ex., box cavity size, door frame width) and ensure they are within ±0.5mm of the design value.
  • Clean chips from the workpiece surface with compressed air to avoid interfering with finishing.

(2) Finition: Achieve Precision & Qualité des surfaces

Finishing refines the workpiece to meet final design requirements, focusing on dimensional accuracy and surface smoothness.

Component TypeFinishing FocusKey Operations & Parameters
Box Inner CavitySmooth cavity walls and partition slot edges; ensure flatness of mounting surfacesUse Φ6mm ball-head mill (ABS); vitesse de coupe 16,000 tr/min, vitesse d'avance 600 mm/min; wall roughness Ra ≤1.6μm
Door Observation WindowSmooth cutout edges; ensure parallelism with door frameUse Φ3mm ball-head mill (PC); vitesse de coupe 18,000 tr/min, vitesse d'avance 500 mm/min; edge chipping ≤0.1mm
HandlePolish curved surface; machine ergonomic grip contourUse Φ4mm ball-head mill (ABS); vitesse de coupe 17,000 tr/min, vitesse d'avance 700 mm/min; surface roughness Ra ≤0.8μm

Finishing Quality Checks:

  • Use a surface roughness tester to verify Ra values (par ex., visible surfaces require Ra ≤0.8μm).
  • Use a coordinate measuring machine (MMT) to inspect critical features: Par exemple, hinge mounting holes must have a position error ≤0.1mm to ensure door alignment.

4. Post-traitement: Enhance Prototype Performance & Esthétique

Post-processing improves the prototype’s appearance, fonctionnalité, and durability—bridging the gap between machined parts and a realistic refrigerator model.

(1) Traitement de surface: Refine Texture & Apparence

Tailor treatment methods to material type and part function:

Material/Part TypeSurface Treatment StepsExpected Outcome
ABS Box/Door Body1. Sand with 400# 800# 1200# papier de verre (remove tool marks)2. Wipe with isopropyl alcohol (degrease)3. Spray matte paint (50µm d'épaisseur, color matching design)Paint adhesion ≥4B (pas de pelage); surface gloss 30–50 GU (finition mate)
PC Observation Window1. Polish with 600# abrasive paste (remove cutting marks)2. Polish with 1200# paste (enhance transparency)3. Clean with lens cleanerLight transmittance ≥85%; no visible scratches or haze
Acrylic Decorative Strips1. Sand with 1000# papier de verre (bords lisses)2. Polish with acrylic-specific polishing paste3. Apply UV protective coatingGloss value ≥90 GU; no yellowing after 100 heures d'exposition aux UV
Aluminum Slide Rails1. Degrease with alkaline cleaner2. Anodize (form 8–10μm silver-gray oxide film)3. Sandblast (surface mate)Résistance à la corrosion: No rust after 48-hour salt spray test; friction coefficient ≤0.15

(2) Assemblée & Debugging: Validate Prototype Functionality

Assemble machined components and test key functions to ensure the prototype meets design goals:

Assembly Steps:

  1. Pre-Assembly Check: Verify that all parts meet dimensional requirements (par ex., door frame fits box body with 2–3mm clearance).
  2. Component Installation:
  • Mount hinges to door and box (use torque wrench to apply 5–8 N·m force to avoid thread damage).
  • Install handle onto door (ensure alignment; no wobble when pulled).
  • Attach slide rails to drawers and box (test sliding resistance ≤5N).
  1. Sealing Test: Place a thin paper strip between door and box, close the door, and pull the strip—resistance should be uniform (indicates tight sealing).

Functional Debugging:

  • Door Operation: Test opening/closing 100 times—door should stay closed without manual locking; no squeaking.
  • Drawer Sliding: Open/close drawers 50 times—no jamming; slides smoothly throughout the stroke.
  • Component Fit: Check that simulated refrigeration system mounts (par ex., compressor brackets) align with holes (position error ≤0.1mm).

5. Contrôle de qualité & Optimisation: Ensure Prototype Reliability

Strict quality control identifies defects early, while optimization reduces costs and improves efficiency for future iterations.

(1) Key Quality Control Standards

Control ItemAcceptance CriteriaInspection Method
Précision dimensionnelleBox cavity: ±0,2 mm- Door frame: ±0,1mm- Hole position: ±0,1mmMMT (pour les fonctionnalités critiques); digital caliper (for general dimensions)
Qualité des surfacesVisible surfaces: Ra ≤0.8μm, no tool marks/scratches- Hidden surfaces: Ra ≤1.6μmSurface roughness tester; inspection visuelle (under 500lux light)
Assembly FitDoor-box clearance: 2-3mm (uniform)- Drawer sliding resistance: ≤5NFeeler gauge (for clearance); force gauge (for sliding resistance)
Material PerformanceABS impact resistance: ≥15 kJ/m²- PC transparency: ≥85%Izod impact tester; spectrophotometer

(2) Process Optimization Tips

  1. Material Saving: Pour les grandes pièces (par ex., box body), design hollow structures (with 3–5mm thick walls) to reduce blank size—saves 20–30% material cost.
  2. Machining Efficiency: Combine roughing and semi-finishing for simple parts (par ex., decorative strips) to reduce tool change time by 15–20%.
  3. Post-Processing Simplification: For non-visible parts (par ex., inner partition slots), skip painting—saves 10–15% of post-processing time.

Yigu Technology’s Perspective on CNC Machining Refrigerator Prototype Models

Chez Yigu Technologie, we believe design-machining integration is the core of efficient refrigerator prototype development. Many clients face issues like door sealing failure or drawer jamming due to disconnected design and machining. Our team optimizes models for manufacturability: Par exemple, we add 0.3mm machining allowance to door frames to ensure sealing clearance, and design self-lubricating structures for slide rails to reduce post-processing. We also select materials strategically—using ABS for main bodies (rentable, easy to finish) and PC for observation windows (haute transparence, résistant aux chocs). For large-batch prototypes, we use multi-cavity fixtures to machine 2–3 parts at once, réduisant le temps de production en 40%. Our goal is to deliver prototypes that accurately reflect mass-production effects, helping clients shorten product development cycles by 25–30%.

Indice
Faire défiler vers le haut