What Is the CNC Machining Process of an Electric Oven Prototype? Un guide étape par étape

3 axis cnc machining

Developing an electric oven prototype requires precise CNC machining to verify structural rationality, functional feasibility, and appearance texture—especially since its structure (armoire, panneau de porte, heating components) and functional needs differ from appliances like electric pressure cookers. This guide breaks down the full CNC machining workflow for electric oven prototypes, de la conception préliminaire au post-traitement, avec des paramètres clés, choix de matériaux, and problem-solving tips.

1. Préparation préliminaire: Conception & Informatique

Avant l'usinage, thorough design and data optimization lay the foundation for accurate, production efficace. This stage focuses on 3D modeling and model splitting to align with CNC capabilities.

(1) 3D Modélisation avec un logiciel CAO

The 3D model must fully reflect the electric oven’s exterior structure, internal components, et caractéristiques du processus—every detail impacts machining accuracy and final functionality. Key elements to include:

Catégorie de structureDétails de conception clésExigences de précisionBut
Exterior StructureCabinet outline, panneau de porte (glass viewing window + poignée), trous de dissipation de chaleur, control knobs/buttonsCabinet diagonal error ≤0.3mmEnsure sealing when closed; match aesthetic standards
Structure interneGrill brackets (machines à sous), heating tube mounting holes, thermostat mounting positionsGrill slot accuracy ±0.1mm; heating tube hole spacing tolerance ±0.2mmFit real components (Par exemple, heating tubes, thermostats)
Caractéristiques du processusHinge mounting slots (panneau de porte + armoire), draft slope for heat dissipation holes0.3mm movable clearance for hinges; 3°~5° draft slopeEnable smooth door operation; simplify CNC machining

(2) Réparation de modèle & Hierarchical Splitting

Structures complexes (Par exemple, multi-level grills, removable door panels) can’t be machined as a single piece—splitting them into individual components avoids tool interference and eases clamping.

Splitting Principles:

  1. Prioriser easy clamping: Split large parts (Par exemple, armoire) into single-sided machinable sections to reduce setup time.
  2. Minimize tool interference: Machine deep cavity structures (Par exemple, internal grill slots) separately instead of trying to access them from the outside.
  3. Mark assembly datums: When exporting STL files, label reference points (Par exemple, cabinet bottom, door dowel holes) to ensure accurate reassembly later.

2. Sélection des matériaux & Planification du processus de traitement

Choosing the right materials for each part is critical—they must balance machinability, fonctionnalité, et coûter. Below is a detailed breakdown of material options and their corresponding processes:

(1) Sélection des matériaux du prototype

Different components of the electric oven require materials with specific properties (Par exemple, résistance à la chaleur, transparence):

Type de matériauPièces applicablesMachining Key PointsTraitement de surface
AbsCabinet body, control knobsFacile à fraiser; Assure de l'outil basSpray matte oil (adhérence ≥4B norme) to simulate metal texture
Alliage en aluminiumHeat dissipation hole panels, handle bracketsRequires high spindle speed (to avoid burrs); Utiliser des outils en carbureAnodisation (silver-gray oxide film, 8–12μm thick) pour l'antioxydation + wire drawing for uniform texture
Acrylique TransparentDoor panel observation windowPrecision cutting; éviter d'écailler les bordsPolissage (light transmittance ≥90%) to ensure clear visibility
Pom (Polyoxyméthylène)Hinge shaft sleeves, grill railsCoefficient de frottement faible; Évitez la surchauffe (prone to melting)Aucun traitement supplémentaire (naturally wear-resistant for sliding parts)

(2) Processus d'usinage CNC de base

The machining process is tailored to each part’s shape and material. Below are the key process combinations and their purposes:

Nom de processusScénarios d'applicationParamètres clés & Conseils
Moulin CNCCabinet cavities (depth ≥50mm), heat dissipation hole arraysUse long-shank tools for deep cavities (Empêcher les vibrations); use array programming for hole arrays (improve efficiency by 30–50%)
Forage & TapotementHinge M3 threaded holesDrill Φ2.5mm bottom holes first, puis appuyez sur (évite le dénudage du fil)
Câbler EDMSpecial-shaped profiles (Par exemple, acrylic viewing window)Atteint une précision de ±0,02 mm (critique pour la transparence, parties visibles)

3. Key Implementation Details for CNC Machining

To ensure precision and avoid defects, focus on programming strategies, clamping methods, and parameter optimization—especially for challenging structures like deep cavities or thin walls.

(1) Programmation & Tool Strategy

Different features (Par exemple, cavités, trous de dissipation de chaleur) require specific toolpaths to balance speed and accuracy:

Cavity Machining (Par exemple, Cabinet Internal Space)

  • Usinage grossier: Utiliser “contour height layered cuttingwith a Φ12mm flat-bottom tool to quickly remove material. Leave 0.3mm finishing allowance to avoid overcutting.
  • Finition: Switch to a Φ6mm ball-head tool and usewrap cuttingalong the cavity surface. This ensures the inner wall is smooth (surface roughness Ra ≤1.6μm), critical for proper component fit.

Heat Dissipation Hole Processing

  • Round array holes (Φ5mm): Utiliser “pecking drilling” (drill 2–3mm, retract to clear chips) to prevent tool breakage in deep holes.
  • Special-shaped holes (Par exemple, long strips): Use a Φ3mm tool with a 0.8mm stepmilled groovepath—this ensures clean edges without excessive tool wear.

(2) Méthodes de serrage & Paramètres d'usinage

Clamping directly affects part stability during machining, while parameters (vitesse de broche, taux d'alimentation) impact surface quality and efficiency:

Type de pièceMéthode de serrageVitesse de broche (RPM)Taux d'alimentation (mm / min)Profondeur de coupe (MM)
Cabinet Body (Abs)Pince plate + platen10,000–15 0001,200–2 0000.5–0,8
Aluminum Alloy PanelVacuum suction cup (surface plane)18,000–22 000800–1 5000.2–0,5
Acrylique TransparentDouble-sided tape fixing20,000–25,000500–1 0000.1–0,3

(3) Solving Common Machining Difficulties

Two major challenges in electric oven prototype machining are deep cavity vibration and thin-wall deformation—here’s how to address them:

DifficultyCauseSolution
Deep Cavity Vibration (≥50mm depth)Long tool overhang leads to instabilityUse TiAlN-coated carbide tools (increase rigidity); reduce feed rate to 800mm/min; boost cutting fluid flow (cool tool and clear chips)
Thin-Wall Deformation (side wall ≤2mm)Material is too fragile to withstand cutting forcesAdopter “coupe en couches + reinforcement”: Add temporary support ribs during machining, then mill them off after the part is stable

4. Post-traitement & Vérification fonctionnelle

Après l'usinage, post-processing enhances appearance and functionality, while functional tests confirm the prototype meets design goals.

(1) Traitement de surface

Surface treatment improves both aesthetics and performance—match the process to the part’s role:

PartieÉtapes de traitement de surfaceRésultat attendu
Cabinet Body (Abs)1. Grind with 600# papier de verre (supprimer les marques d'outils); 2. Pulvériser de la peinture noire mate; 3. Screen print control panel logos (temperature scales, function icons)Adhérence de la peinture ≥4B; logo accuracy ±0.1mm (clair, aligned)
Aluminum Alloy Panel1. Anodiser (form 8–12μm silver-gray oxide film); 2. Hand-grind along grain direction (tirage)Amélioration de la résistance à l'usure; uniform metal texture
Acrylic Viewing WindowPolissage avec pâte abrasive (step-by-step from coarse to fine)Light transmittance ≥90%; pas de rayures

(2) Assemblée & Tests fonctionnels

Assembly ensures components work together, while tests validate key functions like heat insulation and temperature control:

Functional Assembly:

  • Hinge installation: Ensure door opens/closes smoothly with a gap ≤0.5mm (prevents heat leakage).
  • Grill fixing: Check that the grill slides along rails with resistance ≤5N; positioning slots fit tightly (no wobble).

Mock Tests:

  • Heat insulation test: Simulate heating with a resistance wire (mimic heating tube). Ensure the distance between the cabinet shell and “tube chauffant” is ≥20mm; shell temperature rise ≤45°C (safe for users).
  • Temperature control simulation: Adjust the control knob—verify that the stroke matches the “thermostat” (virtual element) scale with an error ≤5% (accurate temperature regulation).

5. Inspection & Optimisation des coûts

Inspection ensures precision, while optimization reduces costs without sacrificing quality—critical for prototype development.

(1) Inspection des dimensions critiques

Utilisez une machine à mesurer de coordonnées (Cmm) to check key dimensions that impact functionality:

  • Door panel diagonal error ≤0.3mm (sealing when closed).
  • Heating tube mounting hole spacing ±0.15mm (matches real component sizes).
  • Hinge slot clearance 0.3mm (smooth door operation).

(2) Coût & Efficiency Optimization Tips

Three strategies to lower costs and speed up production:

  1. Disassemble for cost savings: Split the door into glass (acrylic cutting) and frame (ABS milling) instead of machining as one piece—cuts cost by 20–30%.
  2. Fast clamping with zero-point positioning: Use a zero-point system to reduce tool-setting time when changing parts; single clamping error ≤0.005mm (maintain accuracy).
  3. Hybrid processes for details: Combine CNC milling (for large structures) with SLA 3D printing (for small details like knob top grain)—faster than full CNC for intricate features.

Yigu Technology’s Perspective on Electric Oven Prototype CNC Machining

À la technologie Yigu, nous croyons precision balancing and process optimization are key to efficient electric oven prototype machining. Many clients overcomplicate machining by treating all parts with the same precision—for example, using high-cost aluminum alloy for non-heat-related panels. Our team helps select materials strategically: ABS for cabinets (rentable, easy to finish) and aluminum alloy only for heat-dissipating parts (needs durability). We also optimize toolpaths—for deep cabinet cavities, our TiAlN-coated tools and reduced feed rates cut vibration by 40%, while our “coupe en couches + reinforcementmethod eliminates thin-wall deformation. En plus, we use hybrid CNC + 3D printing to speed up detail production by 25%. Our goal is to deliver prototypes that accurately validate design goals at the lowest possible cost.

FAQ

  1. Why is acrylic used for the electric oven’s viewing window instead of glass?

Acrylic is lighter, plus résistant à l'impact, and easier to CNC-cut with high precision (light transmittance ≥90%) than glass—critical for prototypes where weight and machining flexibility matter. Glass is heavier, more fragile during machining, and harder to shape into custom sizes, making it impractical for prototype development.

  1. What’s the purpose of the 3°~5° draft slope on heat dissipation holes?

The draft slope simplifies CNC machining: it allows the tool to exit the hole cleanly without scraping the edges (reducing burrs). Without a draft slope, the tool would rub against the hole’s vertical walls, causing rough surfaces or tool wear—both of which increase rework time.

  1. How long does it take to CNC machine a full electric oven prototype?

For a single prototype, the total time is ~3–5 days: 1 day for design/data processing, 1–2 jours pour l’usinage CNC (en fonction de la complexité partielle), 0.5–1 day for post-processing, and 0.5–1 day for assembly/testing. Production par lots (10+ prototypes) can be shortened to 2–3 days using multi-cavity tools and parallel processing.

Indice
Faites défiler en haut