Lors du développement d’un instrument de beauté (tels que des épurateurs de peau à ultrasons ou des appareils de levage RF), le processus de prototype détermine directement si le produit peut répondre aux exigences de précision (comme un ajustement avec une peau de sonde) et besoins fonctionnels (comme l'imperméabilisation). Parmi toutes les méthodes de prototypage, le CNC machining beauty instrument prototype process stands out for its high accuracy and functional validation capabilities—but what makes this process a top choice for beauty device R&D? This article breaks down the core stages, avantages, and key considerations of the CNC machining process for beauty instrument prototypes to solve common development challenges.
1. Core Advantages of the CNC Machining Beauty Instrument Prototype Process
The CNC machining process addresses unique demands of beauty instruments (par ex., delicate probes, transparent components). Below are its five irreplaceable advantages:
| Advantage Category | Specific Performance | Value for Beauty Instruments |
| Ultra-High Precision | Dimensional tolerance controlled within ±0,05 mm, accurately reproducing probe curves, button positions, and LED display slots. | Ensures the probe’s skin contact gap is ≤0.1mm (avoids irritation or uneven energy delivery). |
| Diverse Material Compatibility | Processes plastics (ABS, PC, acrylique) et métaux (alliage d'aluminium, alliage de zinc, acier inoxydable) to match different component functions. | – Acrylic for transparent viewing windows (to check LED indicators).- Stainless steel for conductive probes (par ex., microcurrent devices).- Aluminum alloy for lightweight, high-end housings. |
| Complex Structure Machining | Handles thin walls (<1mm), cavités profondes (battery compartments), et surfaces courbes (poignées ergonomiques) that 3D printing struggles with. | Enables integrated machining of probe holders (thin walls to reduce weight) and waterproof sealing grooves (for IPX7 standards). |
| Functional Surface Treatment | Supports polishing, sablage, anodisation, and laser engraving to simulate mass-production effects. | – Sandblasting on grips (improves anti-slip performance for wet use).- Anodizing on aluminum alloy housings (offers rose gold/silver finishes popular in beauty products). |
| Direct Functional Validation | Machines assembly structures (snaps, screw holes, bearing positions) for immediate prototype assembly and testing (par ex., probe vibration, imperméabilisation). | Cuts R&D time by 30%—no extra post-processing needed to fit components like circuit boards or motors. |
2. Step-by-Step Breakdown of the CNC Machining Beauty Instrument Prototype Process
The CNC machining process follows a linear, repeatable workflow to ensure consistency. It consists of 7 étapes clés, each tailored to beauty instrument requirements:
- 3D Model Design & Optimisation
Use CAD software (SolidWorks/UG) to design all components, y compris:
- Probe parts: Ultrasonic/RF/microcurrent probe profiles (marked with ±0.03mm tolerance).
- Body structure: Grip curves, battery compartments, circuit board slots, and waterproof sealing grooves.
- Surface details: Anti-slip patterns (0.2mm profondeur), light-transmitting holes, and brand logos.
Mark material specifications (par ex., PC for LED covers) and assembly clearances (0.1-0,3mm).
- Sélection des matériaux & Préparation
Choose materials based on component functions (voir tableau ci-dessous), then cut raw materials into blanks (par ex., 100×80×50mm ABS blanks for housings).
| Component Type | Recommended Material | Key Reason |
| Probes (conducteur) | Acier inoxydable 304 | Résistant à la rouille, bonne conductivité électrique. |
| Transparent Windows | Acrylic/PC | Transmission lumineuse élevée (≥90%) to display LED indicators. |
| Logements | ABS/Aluminum Alloy 6061 | – ABS: Faible coût, easy to machine.- Alliage d'aluminium: Léger, premium feel. |
| Decorative Parts | Zinc Alloy | Strong die-cast texture, compatible with plating. |
- Programmation CNC & Sélection d'outils
Generate G-code toolpaths based on the 3D model, optimizing for beauty instrument-specific structures:
- Roughing: Use Φ10mm flat-bottom cutters to remove 90% of excess material, leaving a 0.2–0.5mm allowance (protects thin walls).
- Finition: Use Φ2mm ball nose cutters for probe curves and Φ0.5mm engraving tools for logos/anti-slip patterns.
- Optimization Tip: Use high-speed milling (5,000–10,000 rpm) for plastic parts to avoid surface melting.
- Clamping & Tool Setting
- Petites pièces (probes, boutons): Fix with vacuum adsorption platforms (avoids deformation from fixture pressure).
- Grandes pièces (logements): Clamp with bolt platens or custom fixtures.
- Use laser positioning or edge finders to set the workpiece coordinate system (ensures machining accuracy within ±0.01mm).
- Usinage grossier
Prioritize flat and large surfaces (par ex., housing exteriors, battery compartment bottoms) to quickly shape the part while maintaining stability for delicate details.
- Finition
Focus on high-precision and user-centric details:
- Machine probe curves to Ra0.4 surface roughness (smooth skin contact).
- Cut waterproof sealing grooves (depth 2mm ±0.02mm) to fit rubber O-rings.
- Chamfer edges (C0.5–1mm) on grips and buttons (avoids sharp edges that irritate hands).
- Traitement de surface & Tests fonctionnels
| Test Type | But | Pass Criteria for Beauty Instruments |
| Probe Vibration Test | Verify motor/vibration module efficiency (par ex., ultrasonic scrubbers). | Vibration frequency stable at 20,000–30,000 Hz; no abnormal noise. |
| Waterproof Test | Check if the prototype meets IPX7 standards (common for washable devices). | No water ingress after 30-minute submersion in 1m water. |
| Temperature Control Test | Validate hot compress/cooling function accuracy (par ex., LED light therapy devices). | Temperature variation ≤±1°C from set value (avoids skin burns). |
| Assembly Test | Ensure easy disassembly for maintenance (par ex., battery replacement). | Battery cover removed in <10 secondes; no stuck snaps. |
- Traitement de surface: Polish acrylic windows (pour plus de clarté), anodize metal parts (pour la couleur), or laser-engrave logos (permanent and wear-resistant).
- Assemblée: Fit components (probes, cartes de circuits imprimés, batteries, Joints toriques) into the prototype.
- Essai: Conduct critical functional checks (voir tableau ci-dessous) to validate performance.
3. How Does the CNC Machining Process Compare to Traditional Prototyping Methods?
The CNC machining process outperforms 3D printing and silicone duplication in key metrics for beauty instruments. Here’s a direct comparison:
| Evaluation Metric | Processus d'usinage CNC | 3D Impression | Silicone Duplication |
| Précision | ±0,05 mm (ideal for probes) | ±0.1–0.5mm (risk of uneven probe-skin fit) | ±0.2–0.5mm (poor for functional parts) |
| Material Range | Plastiques + métaux (supports conductive/transparent parts) | Only filaments (PLA, ABS; no metal or high-transparency options) | Epoxy/resin (no metal compatibility; degrades in water) |
| Qualité des surfaces | Lisse (Ra0.4–Ra3.2) with no post-processing | Layered texture (requires sanding; affects skin contact) | Smooth but lacks fine details (can’t replicate anti-slip patterns) |
| Functional Use | Ready for assembly/testing (par ex., imperméabilisation) | Needs drilling/tapping to fit components (no immediate testing) | Only for appearance checks (no functional validation) |
| Rentabilité (10+ Unités) | Lower per-unit cost (reusable programs) | Plus haut (déchets matériels + post-traitement) | Plus haut (silicone mold degradation after 5–8 uses) |
4. Key Precautions for the CNC Machining Beauty Instrument Prototype Process
To avoid common flaws (par ex., thin-wall deformation, probe inaccuracy), follow these four critical precautions:
- Paroi mince & Deep-Cavity Protection
Pour pièces à paroi mince (par ex., 0.8mm probe holders) or deep cavities (par ex., 20mm battery compartments), use layered cutting (0.1mm per layer) and reduce cutting force (≤300N) pour éviter la déformation.
- Probe Accuracy Calibration
Après usinage, use a coordinate measuring machine (MMT) to check probe dimensions. If the skin contact gap exceeds 0.1mm, perform secondary grinding to ensure precision.
- Plastic Material Shrinkage Compensation
Plastics like ABS have a shrinkage rate of ~0.5%. During programming, add a 0.5% margin to dimensions (par ex., a 100mm housing is machined to 100.5mm) to ensure final size matches design.
- Surface Texturing Optimization
- For anti-slip patterns: Use CNC engraving (haute précision) for small areas (poignées) or laser etching (plus rapide) for fine textures.
- For color logos: Use printing or film (rentable) instead of CNC engraving (time-consuming) to reduce lead time.
5. Yigu Technology’s Perspective on the CNC Machining Beauty Instrument Prototype Process
Chez Yigu Technologie, we believe the CNC machining beauty instrument prototype process is the backbone of reliable beauty device R&D. Its ±0.05mm precision solves two core pain points: probe-skin fit (critical for user safety) and waterproof sealing (a must for washable devices)—issues 3D printing can’t address. Par exemple, a client’s RF beauty instrument prototype used our CNC process: we machined stainless steel probes (±0.03mm tolerance) and aluminum alloy housings (anodized rose gold), which passed IPX7 tests and reduced R&D time by 25%. We recommend combining CNC with 3D printing (for non-critical decor parts) to balance cost and performance. Finalement, the CNC process validates design flaws early, cutting mass-production risks.
FAQ
- How long does the CNC machining beauty instrument prototype process take?
It takes 7–15 days, en fonction de la complexité: pièces simples (par ex., ABS housings) take 7–10 days, while complex designs (par ex., multi-material prototypes with probes + transparent windows) take 12–15 days (including surface treatment and testing).
- What’s the cost range for a prototype using this process?
The cost ranges from 600 à 3,000 yuan per unit: plastic prototypes (ABS/PC) cost 600–1,500 yuan, while metal prototypes (aluminum alloy/stainless steel probes) cost 1,500–3,000 yuan (due to higher material and machining costs).
- Can this process handle custom-shaped probes for specialized beauty instruments?
Yes—we use 5-axis CNC machines to machine custom probe curves (par ex., curved RF probes for facial contours) with ±0.03mm tolerance. Après usinage, we perform surface polishing to ensure smooth skin contact, meeting even the most specialized design needs.
